NeMo / tests /core /test_optimizers_schedulers.py
camenduru's picture
thanks to NVIDIA ❤
7934b29
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import random
import omegaconf
import pytest
import pytorch_lightning as pl
import torch
import torch.optim
from pytorch_lightning.utilities import rank_zero_only
from nemo.core import config, optim
from nemo.core.optim.lr_scheduler import AVAILABLE_SCHEDULERS
from nemo.core.optim.optimizers import AVAILABLE_OPTIMIZERS
from nemo.utils import logging
class TempModel(torch.nn.Module):
def __init__(self):
super(TempModel, self).__init__()
self.layer = torch.nn.Linear(5, 1)
def forward(self, x):
x = self.layer(x)
return x
class OptCounter(torch.optim.SGD):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
for group in self.param_groups:
group.setdefault('count', 0)
def step(self, closure=None):
for group in self.param_groups:
group['count'] += 1
super().step(closure)
class RandomDataset(torch.utils.data.Dataset):
def __init__(self, dataset_len):
super().__init__()
self.__dataset_len = dataset_len
def __getitem__(self, *args):
return torch.randn(2)
def __len__(self):
return self.__dataset_len
class ExampleModel(pl.LightningModule):
def __init__(self, batch_size, dataset_len, drop_last, max_steps):
super().__init__()
self.l1 = torch.nn.modules.Linear(in_features=2, out_features=1)
self.batch_size = batch_size
self.dataset_len = dataset_len
self.drop_last = drop_last
self.max_steps = max_steps
def train_dataloader(self):
dataset = RandomDataset(self.dataset_len)
return torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, drop_last=self.drop_last)
def training_step(self, batch, batch_idx):
output = self.l1(batch)
output = torch.nn.functional.l1_loss(output, torch.ones(output.size()).to(output.device))
return {"loss": output}
def configure_optimizers(self):
self.my_opt = OptCounter(self.parameters(), lr=0.02)
return self.my_opt
class Callback(pl.callbacks.Callback):
@rank_zero_only
def on_train_end(self, trainer, module):
count = module.my_opt.param_groups[0]['count']
if trainer.global_step != count or trainer.global_step != module.max_steps:
logging.debug(f"max_epochs: {trainer.max_epochs}")
logging.debug(f"accumulate_grad_batches: {trainer.accumulate_grad_batches}")
logging.debug(f"limit_train_batches: {trainer.limit_train_batches}")
logging.debug(f"num_devices: {trainer.num_devices}")
logging.debug(f"batch_size: {module.batch_size}")
logging.debug(f"dataset_len: {module.dataset_len}")
logging.debug(f"drop_last: {module.drop_last}")
logging.debug(f"{len(trainer.train_dataloader)}")
logging.debug(f"{trainer.num_training_batches }")
self.assert_counts(trainer, module, count)
def assert_counts(self, trainer, module, count):
assert trainer.global_step == count, f"{trainer.global_step} != {count} != {module.max_steps}"
assert trainer.global_step == module.max_steps, f"{trainer.global_step} != {count} != {module.max_steps}"
class SchedulerNoOpCallback(Callback):
def on_train_batch_end(self, trainer: pl.Trainer, pl_module, outputs, batch, batch_idx):
# pl_module.max_steps is "original" max steps without trainer extra steps.
if (trainer.global_step + 1) % 3 == 0 and (trainer.global_step + 1) < pl_module.max_steps:
schedulers = trainer.lr_scheduler_configs
for scheduler in schedulers:
# Decrement the counter by 2, then perform a scheduler.step() to perform a no-up
# as well as update the optimizer lr in all param groups
scheduler.scheduler.last_epoch -= 2
scheduler.scheduler.step()
# Increase the max step count by 1
trainer.fit_loop.max_steps = trainer.fit_loop.max_steps + 1
def assert_counts(self, trainer, module, count):
num_skips = module.max_steps // 3
extra_steps = module.max_steps + num_skips
assert trainer.global_step == count, f"{trainer.global_step} != {count} != {extra_steps}"
assert trainer.global_step == extra_steps, f"{trainer.global_step} != {count} != {extra_steps}"
class TestOptimizersSchedulers:
INITIAL_LR = 0.1
MIN_LR = 1e-3
MAX_STEPS = 10
D_MODEL = 16
# Apex optimizers require CUDA and this test is being run on CPU only tests
@pytest.mark.unit
def test_get_optimizer(self):
model = TempModel()
if torch.cuda.is_available():
model.cuda()
for opt_name in AVAILABLE_OPTIMIZERS.keys():
if opt_name == 'fused_adam':
if not torch.cuda.is_available():
continue
if opt_name == 'distributed_fused_adam':
# TODO: this test fails when run with all other tests, we need to move this test to nightly or CI
continue
# if not torch.cuda.is_available() or not torch.distributed.is_nccl_available():
# continue
# if not torch.distributed.is_initialized():
# torch.distributed.init_process_group(
# 'nccl', world_size=1, rank=0, store=torch.distributed.HashStore(),
# )
opt_cls = optim.get_optimizer(opt_name)
if opt_name == 'adafactor':
# Adafactor's default mode uses relative_step without any lr.
opt = opt_cls(model.parameters())
else:
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
assert isinstance(opt, AVAILABLE_OPTIMIZERS[opt_name])
@pytest.mark.unit
def test_register_optimizer(self):
class TempOpt(torch.optim.SGD):
pass
class TempOptParams(config.optimizers.SGDParams):
pass
optim.register_optimizer('TempOpt', TempOpt, TempOptParams)
model = TempModel()
opt_cls = optim.get_optimizer('TempOpt')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
assert isinstance(opt, TempOpt)
@pytest.mark.unit
def test_optim_config_parse_bypass(self):
basic_optim_config = {'weight_decay': 0.001, 'betas': [0.8, 0.5]}
parsed_params = optim.parse_optimizer_args('novograd', basic_optim_config)
assert parsed_params['weight_decay'] == basic_optim_config['weight_decay']
assert parsed_params['betas'][0] == basic_optim_config['betas'][0]
assert parsed_params['betas'][1] == basic_optim_config['betas'][1]
dict_config = omegaconf.OmegaConf.create(basic_optim_config)
parsed_params = optim.parse_optimizer_args('novograd', dict_config)
assert parsed_params['weight_decay'] == dict_config['weight_decay']
assert parsed_params['betas'][0] == dict_config['betas'][0]
assert parsed_params['betas'][1] == dict_config['betas'][1]
@pytest.mark.unit
def test_optim_config_parse_arg_by_name(self):
basic_optim_config = {'name': 'auto', 'weight_decay': 0.001, 'betas': [0.8, 0.5]}
parsed_params = optim.parse_optimizer_args('novograd', basic_optim_config)
assert parsed_params['weight_decay'] == basic_optim_config['weight_decay']
assert parsed_params['betas'][0] == basic_optim_config['betas'][0]
assert parsed_params['betas'][1] == basic_optim_config['betas'][1]
dict_config = omegaconf.OmegaConf.create(basic_optim_config)
parsed_params = optim.parse_optimizer_args('novograd', dict_config)
assert parsed_params['weight_decay'] == dict_config['weight_decay']
assert parsed_params['betas'][0] == dict_config['betas'][0]
assert parsed_params['betas'][1] == dict_config['betas'][1]
with pytest.raises(omegaconf.errors.ConfigKeyError):
optim.parse_optimizer_args('sgd', dict_config)
@pytest.mark.unit
def test_optim_config_parse_arg_by_target(self):
basic_optim_config = {
'_target_': 'nemo.core.config.NovogradParams',
'params': {'weight_decay': 0.001, 'betas': [0.8, 0.5]},
}
basic_optim_config = omegaconf.OmegaConf.create(basic_optim_config)
parsed_params = optim.parse_optimizer_args('novograd', basic_optim_config)
assert parsed_params['weight_decay'] == basic_optim_config['params']['weight_decay']
assert parsed_params['betas'][0] == basic_optim_config['params']['betas'][0]
assert parsed_params['betas'][1] == basic_optim_config['params']['betas'][1]
dict_config = omegaconf.OmegaConf.create(basic_optim_config)
parsed_params = optim.parse_optimizer_args('novograd', dict_config)
assert parsed_params['weight_decay'] == dict_config['params']['weight_decay']
assert parsed_params['betas'][0] == dict_config['params']['betas'][0]
assert parsed_params['betas'][1] == dict_config['params']['betas'][1]
# Names are ignored when passing class path
# This will be captured during optimizer instantiation
output_config = optim.parse_optimizer_args('sgd', dict_config)
sgd_config = vars(config.SGDParams())
novograd_config = vars(config.NovogradParams())
assert set(output_config.keys()) != set(sgd_config.keys())
assert set(output_config.keys()) == set(novograd_config)
@pytest.mark.unit
def test_get_scheduler(self):
model = TempModel()
optimizer = optim.Novograd(model.parameters(), lr=self.INITIAL_LR)
for sched_name in AVAILABLE_SCHEDULERS.keys():
sched_cls = optim.lr_scheduler.get_scheduler(sched_name)
try:
sched = sched_cls(optimizer)
assert isinstance(sched, AVAILABLE_SCHEDULERS[sched_name])
continue
except Exception:
pass
try:
sched = sched_cls(optimizer, max_steps=self.MAX_STEPS)
assert isinstance(sched, AVAILABLE_SCHEDULERS[sched_name])
continue
except Exception:
pass
@pytest.mark.unit
def test_register_scheduler(self):
class TempSched(optim.lr_scheduler.CosineAnnealing):
pass
class TempSchedParams(config.schedulers.CosineAnnealingParams):
pass
optim.lr_scheduler.register_scheduler('TempSched', TempSched, TempSchedParams)
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
sched_cls = optim.lr_scheduler.get_scheduler('TempSched')
sched = sched_cls(opt, max_steps=self.MAX_STEPS)
assert isinstance(sched, TempSched)
@pytest.mark.unit
def test_sched_config_parse_simple(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
basic_sched_config = {'name': 'CosineAnnealing', 'max_steps': 10}
scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, basic_sched_config)
assert isinstance(scheduler_setup['scheduler'], optim.lr_scheduler.CosineAnnealing)
dict_config = omegaconf.OmegaConf.create(basic_sched_config)
scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, dict_config)
assert isinstance(scheduler_setup['scheduler'], optim.lr_scheduler.CosineAnnealing)
@pytest.mark.unit
def test_sched_config_parse_from_cls(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
basic_sched_config = {
'_target_': 'nemo.core.config.CosineAnnealingParams',
'params': {'min_lr': 0.1},
'max_steps': self.MAX_STEPS,
}
scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, basic_sched_config)
assert isinstance(scheduler_setup['scheduler'], optim.lr_scheduler.CosineAnnealing)
dict_config = omegaconf.OmegaConf.create(basic_sched_config)
scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, dict_config)
assert isinstance(scheduler_setup['scheduler'], optim.lr_scheduler.CosineAnnealing)
@pytest.mark.unit
def test_sched_config_parse_reduce_on_plateau(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
reduce_on_plateau_parameters = {
'mode': 'min',
'factor': 0.5,
'patience': 1,
'threshold': 1e-4,
'threshold_mode': 'rel',
'min_lr': 1e-6,
'eps': 1e-7,
'verbose': True,
'cooldown': 1,
}
basic_sched_config = {
'name': 'ReduceLROnPlateau',
'monitor': 'val_loss',
'reduce_on_plateau': True,
'max_steps': self.MAX_STEPS,
}
basic_sched_config.update(reduce_on_plateau_parameters)
scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, basic_sched_config)
assert isinstance(scheduler_setup['scheduler'], torch.optim.lr_scheduler.ReduceLROnPlateau)
for k, v in reduce_on_plateau_parameters.items():
if k == 'min_lr':
k += 's'
v = [v]
found_v = getattr(scheduler_setup['scheduler'], k)
assert (
found_v == v
), f"Wrong value `{repr(found_v)}` for `ReduceLROnPlateau` parameter `{k}`. Expected `{repr(v)}`."
dict_config = omegaconf.OmegaConf.create(basic_sched_config)
scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, dict_config)
assert isinstance(scheduler_setup['scheduler'], torch.optim.lr_scheduler.ReduceLROnPlateau)
for k, v in reduce_on_plateau_parameters.items():
if k == 'min_lr':
k += 's'
v = [v]
found_v = getattr(scheduler_setup['scheduler'], k)
assert (
found_v == v
), f"Wrong value `{repr(found_v)}` for `ReduceLROnPlateau` parameter `{k}`. Expected `{repr(v)}`."
@pytest.mark.unit
def test_WarmupPolicy(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
# No warmup case
policy = optim.lr_scheduler.WarmupPolicy(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr == self.INITIAL_LR
for i in range(self.MAX_STEPS):
assert policy.get_last_lr()[0] == self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup steps available
policy = optim.lr_scheduler.WarmupPolicy(opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 4:
assert policy.get_last_lr()[0] <= self.INITIAL_LR
else:
assert policy.get_last_lr()[0] == self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
@pytest.mark.unit
def test_WarmupHoldPolicy(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
# No warmup case
policy = optim.lr_scheduler.WarmupHoldPolicy(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr == self.INITIAL_LR
for i in range(self.MAX_STEPS):
assert policy.get_last_lr()[0] == self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup steps available
policy = optim.lr_scheduler.WarmupHoldPolicy(opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 4:
assert policy.get_last_lr()[0] <= self.INITIAL_LR
else:
assert policy.get_last_lr()[0] == self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup + Hold steps available
policy = optim.lr_scheduler.WarmupHoldPolicy(
opt, warmup_steps=5, hold_steps=3, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR
)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 4:
assert policy.get_last_lr()[0] <= self.INITIAL_LR
else:
assert policy.get_last_lr()[0] == self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
@pytest.mark.unit
def test_WarmupAnnealing(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
# No warmup case
policy = optim.lr_scheduler.WarmupAnnealing(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr == self.INITIAL_LR
for i in range(self.MAX_STEPS):
assert policy.get_last_lr()[0] <= self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup steps available
policy = optim.lr_scheduler.WarmupAnnealing(opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 5:
assert policy.get_last_lr()[0] <= self.INITIAL_LR
else:
assert policy.get_last_lr()[0] < self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup + Hold steps available
policy = optim.lr_scheduler.WarmupHoldPolicy(
opt, warmup_steps=5, hold_steps=3, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR
)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 4:
assert policy.get_last_lr()[0] <= self.INITIAL_LR
else:
assert policy.get_last_lr()[0] == self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
@pytest.mark.unit
def test_SquareAnnealing(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
# No warmup case
policy = optim.lr_scheduler.SquareAnnealing(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr == self.INITIAL_LR
for i in range(self.MAX_STEPS):
assert policy.get_last_lr()[0] <= self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup steps available
policy = optim.lr_scheduler.SquareAnnealing(opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 5:
assert policy.get_last_lr()[0] <= self.INITIAL_LR
else:
assert policy.get_last_lr()[0] < self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
@pytest.mark.unit
def test_SquareRootAnnealing(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
# No warmup case
policy = optim.lr_scheduler.SquareRootAnnealing(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr == self.INITIAL_LR
for i in range(self.MAX_STEPS):
assert policy.get_last_lr()[0] <= self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup steps available
policy = optim.lr_scheduler.SquareRootAnnealing(
opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR
)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 5:
assert policy.get_last_lr()[0] <= self.INITIAL_LR
else:
assert policy.get_last_lr()[0] < self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
@pytest.mark.unit
def test_CosineAnnealing(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
# No warmup case
policy = optim.lr_scheduler.CosineAnnealing(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr == self.INITIAL_LR
for i in range(self.MAX_STEPS):
assert policy.get_last_lr()[0] <= self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup steps available
policy = optim.lr_scheduler.CosineAnnealing(opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 5:
assert policy.get_last_lr()[0] <= self.INITIAL_LR
else:
assert policy.get_last_lr()[0] < self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup + Constant steps available
policy = optim.lr_scheduler.CosineAnnealing(
opt, warmup_steps=3, constant_steps=2, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR
)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 3:
assert policy.get_last_lr()[0] <= self.INITIAL_LR + 1e-5
elif i > 3 and i <= 8:
assert policy.get_last_lr()[0] == policy._get_lr(i)[0]
else:
assert policy.get_last_lr()[0] == self.MIN_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Noam scheduler should decay past MAX_STEPS - run two schedulers in parallel to test it
@pytest.mark.unit
def test_NoamAnnealing(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt1 = opt_cls(model.parameters(), lr=self.INITIAL_LR)
opt2 = opt_cls(model.parameters(), lr=self.INITIAL_LR)
# No warmup case
policy1 = optim.lr_scheduler.NoamAnnealing(
opt1, d_model=self.D_MODEL, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR
)
policy2 = optim.lr_scheduler.NoamAnnealing(
opt2, d_model=self.D_MODEL, max_steps=self.MAX_STEPS * 2, min_lr=self.MIN_LR
)
initial_lr = policy1.get_last_lr()[0]
assert initial_lr == self.D_MODEL ** (-0.5) * self.INITIAL_LR
for i in range(self.MAX_STEPS * 2):
assert self.MIN_LR < policy1.get_last_lr()[0] <= self.INITIAL_LR
assert policy1.get_last_lr()[0] == policy2.get_last_lr()[0]
opt1.step()
opt2.step()
policy1.step()
policy2.step()
# Warmup steps available
policy1 = optim.lr_scheduler.NoamAnnealing(
opt1, d_model=self.D_MODEL, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR
)
policy2 = optim.lr_scheduler.NoamAnnealing(
opt2, d_model=self.D_MODEL, warmup_steps=5, max_steps=self.MAX_STEPS * 2, min_lr=self.MIN_LR
)
initial_lr = policy1.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS * 2):
if i <= 5:
assert policy1.get_last_lr()[0] <= self.INITIAL_LR
else:
assert self.MIN_LR < policy1.get_last_lr()[0] < self.INITIAL_LR
assert policy1.get_last_lr()[0] == policy2.get_last_lr()[0]
opt1.step()
opt2.step()
policy1.step()
policy2.step()
@pytest.mark.unit
def test_PolynomialDecayAnnealing(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
# No warmup case
policy = optim.lr_scheduler.PolynomialDecayAnnealing(
opt, power=2, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR
)
initial_lr = policy.get_last_lr()[0]
assert initial_lr == self.INITIAL_LR
for i in range(self.MAX_STEPS):
assert policy.get_last_lr()[0] <= self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup steps available
policy = optim.lr_scheduler.PolynomialDecayAnnealing(
opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR
)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 5:
assert policy.get_last_lr()[0] <= self.INITIAL_LR
else:
assert policy.get_last_lr()[0] < self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
@pytest.mark.unit
def test_PolynomialHoldDecayAnnealing(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
# No warmup case
policy = optim.lr_scheduler.PolynomialHoldDecayAnnealing(
opt, power=2, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR
)
initial_lr = policy.get_last_lr()[0]
assert initial_lr == self.INITIAL_LR
for i in range(self.MAX_STEPS):
assert policy.get_last_lr()[0] <= self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup steps available
policy = optim.lr_scheduler.PolynomialHoldDecayAnnealing(
opt, power=2, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR
)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 5:
assert policy.get_last_lr()[0] <= self.INITIAL_LR
else:
assert policy.get_last_lr()[0] < self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup + Hold steps available
policy = optim.lr_scheduler.PolynomialHoldDecayAnnealing(
opt, warmup_steps=5, hold_steps=3, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR, power=2
)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 4:
assert policy.get_last_lr()[0] <= self.INITIAL_LR
elif i <= 8:
assert policy.get_last_lr()[0] == self.INITIAL_LR
else:
assert policy.get_last_lr()[0] < self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
@pytest.mark.unit
def test_InverseSquareRootAnnealing(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
# No warmup case
policy = optim.lr_scheduler.InverseSquareRootAnnealing(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr == self.INITIAL_LR
for i in range(self.MAX_STEPS):
assert policy.get_last_lr()[0] <= self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
# Warmup steps available
policy = optim.lr_scheduler.InverseSquareRootAnnealing(
opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR
)
initial_lr = policy.get_last_lr()[0]
assert initial_lr < self.INITIAL_LR
for i in range(self.MAX_STEPS):
if i <= 5:
assert policy.get_last_lr()[0] <= self.INITIAL_LR
else:
assert policy.get_last_lr()[0] < self.INITIAL_LR
opt.step()
policy.step()
policy.step()
final_lr = policy.get_last_lr()[0]
assert final_lr == self.MIN_LR
@pytest.mark.unit
def test_CosineAnnealing_with_noop_steps(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
# No warmup case
policy = optim.lr_scheduler.CosineAnnealing(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR)
initial_lr = policy.get_last_lr()[0]
assert initial_lr == self.INITIAL_LR
update_steps = 0
for i in range(self.MAX_STEPS):
assert policy.get_last_lr()[0] <= self.INITIAL_LR
opt.step()
policy.step()
# Perform a No-Op for scheduler every 2 steps
if i % 2 == 0:
policy.last_epoch -= 1
else:
update_steps += 1
policy.step()
update_steps += 1
assert update_steps < self.MAX_STEPS
final_lr = policy.get_last_lr()[0]
assert final_lr > self.MIN_LR
# update step = true number of updates performed after some number of skipped steps
true_end_lr = policy._get_lr(step=update_steps)[0]
assert final_lr == true_end_lr
@pytest.mark.unit
@pytest.mark.run_only_on('CPU')
def test_max_step_computation(self):
def train(
max_epochs, accumulate_grad_batches, limit_train_batches, devices, batch_size, dataset_len, drop_last
):
trainer = pl.Trainer(
max_epochs=max_epochs,
strategy="ddp_spawn",
accelerator="cpu",
devices=devices,
accumulate_grad_batches=accumulate_grad_batches,
limit_train_batches=limit_train_batches,
enable_checkpointing=False,
enable_progress_bar=False,
)
max_steps = optim.lr_scheduler.compute_max_steps(
max_epochs, accumulate_grad_batches, limit_train_batches, devices, dataset_len, batch_size, drop_last,
)
model = ExampleModel(batch_size, dataset_len, drop_last, max_steps)
trainer.callbacks.append(Callback())
trainer.fit(model)
# This test will break once we and lightning upgrade to pytorch 1.7.0 due to a bug fix in pytorch 1.7.0
train(
31,
accumulate_grad_batches=1,
limit_train_batches=1.0,
devices=9,
batch_size=60,
dataset_len=1613,
drop_last=True,
)
train(
5,
accumulate_grad_batches=1,
limit_train_batches=0.5,
devices=4,
batch_size=97,
dataset_len=498,
drop_last=False,
)
train(
5,
accumulate_grad_batches=8,
limit_train_batches=0.5,
devices=4,
batch_size=54,
dataset_len=629,
drop_last=True,
)
train(
5,
accumulate_grad_batches=1,
limit_train_batches=0.5,
devices=1,
batch_size=68,
dataset_len=488,
drop_last=False,
)
for _ in range(5):
drop_last = bool(random.randint(0, 1))
accumulate_grad_batches = random.randint(1, 10)
limit_train_batches_int = random.randint(1, 10)
limit_train_batches_float = random.uniform(0.5, 1)
limit_train_batches = random.choice([limit_train_batches_int, limit_train_batches_float])
max_epochs = random.randint(4, 20)
devices = random.randint(1, 5)
dataset_len = random.randint(20, devices * 500)
batch_size = random.randint(math.ceil(5.0 / devices), min(dataset_len // devices, 128))
train(
max_epochs, accumulate_grad_batches, limit_train_batches, devices, batch_size, dataset_len, drop_last,
)
@pytest.mark.unit
@pytest.mark.run_only_on('CPU')
def test_max_step_computation_with_sched_no_ops(self):
def train(
max_steps, accumulate_grad_batches, limit_train_batches, devices, batch_size, dataset_len, drop_last
):
trainer = pl.Trainer(
max_steps=max_steps,
strategy="ddp_spawn",
accelerator="cpu",
devices=devices,
accumulate_grad_batches=accumulate_grad_batches,
limit_train_batches=limit_train_batches,
enable_checkpointing=False,
enable_progress_bar=False,
)
model = ExampleModel(batch_size, dataset_len, drop_last, max_steps)
trainer.callbacks.append(SchedulerNoOpCallback())
trainer.fit(model)
# This test will break once we and lightning upgrade to pytorch 1.7.0 due to a bug fix in pytorch 1.7.0
train(
max_steps=20,
accumulate_grad_batches=1,
limit_train_batches=1.0,
devices=4,
batch_size=60,
dataset_len=2000,
drop_last=True,
)