|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""RAdam |
|
Original source taken from https://github.com/LiyuanLucasLiu/RAdam |
|
|
|
Copyright 2019 Liyuan Liu |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); |
|
you may not use this file except in compliance with the License. |
|
You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software |
|
distributed under the License is distributed on an "AS IS" BASIS, |
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
See the License for the specific language governing permissions and |
|
limitations under the License. |
|
""" |
|
import math |
|
|
|
import torch |
|
from torch.optim.optimizer import Optimizer |
|
|
|
|
|
class RAdam(Optimizer): |
|
"""RAdam optimizer""" |
|
|
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): |
|
""" |
|
Init |
|
|
|
:param params: parameters to optimize |
|
:param lr: learning rate |
|
:param betas: beta |
|
:param eps: numerical precision |
|
:param weight_decay: weight decay weight |
|
""" |
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) |
|
self.buffer = [[None, None, None] for _ in range(10)] |
|
super().__init__(params, defaults) |
|
|
|
def step(self, closure=None): |
|
|
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data.float() |
|
if grad.is_sparse: |
|
raise RuntimeError('RAdam does not support sparse gradients') |
|
|
|
p_data_fp32 = p.data.float() |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
state['exp_avg'] = torch.zeros_like(p_data_fp32) |
|
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) |
|
else: |
|
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) |
|
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) |
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
beta1, beta2 = group['betas'] |
|
|
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1.0 - beta2)) |
|
exp_avg.mul_(beta1).add_(grad, alpha=(1.0 - beta1)) |
|
|
|
state['step'] += 1 |
|
buffered = self.buffer[int(state['step'] % 10)] |
|
if state['step'] == buffered[0]: |
|
N_sma, step_size = buffered[1], buffered[2] |
|
else: |
|
buffered[0] = state['step'] |
|
beta2_t = beta2 ** state['step'] |
|
N_sma_max = 2 / (1 - beta2) - 1 |
|
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) |
|
buffered[1] = N_sma |
|
|
|
|
|
if N_sma >= 5: |
|
step_size = ( |
|
group['lr'] |
|
* math.sqrt( |
|
(1 - beta2_t) |
|
* (N_sma - 4) |
|
/ (N_sma_max - 4) |
|
* (N_sma - 2) |
|
/ N_sma |
|
* N_sma_max |
|
/ (N_sma_max - 2) |
|
) |
|
/ (1 - beta1 ** state['step']) |
|
) |
|
else: |
|
step_size = group['lr'] / (1 - beta1 ** state['step']) |
|
buffered[2] = step_size |
|
|
|
if group['weight_decay'] != 0: |
|
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) |
|
|
|
|
|
if N_sma >= 5: |
|
denom = exp_avg_sq.sqrt().add_(group['eps']) |
|
p_data_fp32.addcdiv_(-step_size, exp_avg, denom) |
|
else: |
|
p_data_fp32.add_(-step_size, exp_avg) |
|
|
|
p.data.copy_(p_data_fp32) |
|
|
|
return loss |
|
|