|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import pytorch_lightning as pl |
|
|
|
from nemo.collections.common.callbacks import LogEpochTimeCallback |
|
from nemo.collections.tts.models.radtts import RadTTSModel |
|
from nemo.core.config import hydra_runner |
|
from nemo.utils import logging |
|
from nemo.utils.exp_manager import exp_manager |
|
|
|
|
|
def freeze(model): |
|
for p in model.parameters(): |
|
p.requires_grad = False |
|
|
|
|
|
def unfreeze(model): |
|
for p in model.parameters(): |
|
p.requires_grad = True |
|
|
|
|
|
def prepare_model_weights(model, unfreeze_modules): |
|
if unfreeze_modules != 'all': |
|
model.freeze() |
|
logging.info("module freezed, about to unfreeze modules to be trained") |
|
if 'dur' in unfreeze_modules and hasattr(model.model, 'dur_pred_layer'): |
|
logging.info("Training duration prediction") |
|
unfreeze(model.model.dur_pred_layer) |
|
if 'f0' in unfreeze_modules and hasattr(model.model, 'f0_pred_module'): |
|
logging.info("Training F0 prediction") |
|
unfreeze(model.model.f0_pred_module) |
|
if 'energy' in unfreeze_modules and hasattr(model.model, 'energy_pred_module'): |
|
logging.info("Training energy prediction") |
|
unfreeze(model.model.energy_pred_module) |
|
if 'vpred' in unfreeze_modules and hasattr(model.model, 'v_pred_module'): |
|
logging.info("Training voiced prediction") |
|
unfreeze(model.model.v_pred_module) |
|
if hasattr(model, 'v_embeddings'): |
|
logging.info("Training voiced embeddings") |
|
unfreeze(model.model.v_embeddings) |
|
if 'unvbias' in unfreeze_modules and hasattr(model.model, 'unvoiced_bias_module'): |
|
logging.info("Training unvoiced bias") |
|
unfreeze(model.model.unvoiced_bias_module) |
|
else: |
|
logging.info("Training everything") |
|
|
|
|
|
@hydra_runner(config_path="conf", config_name="rad-tts_dec") |
|
def main(cfg): |
|
trainer = pl.Trainer(**cfg.trainer) |
|
exp_manager(trainer, cfg.get('exp_manager', None)) |
|
model = RadTTSModel(cfg=cfg.model, trainer=trainer).cuda() |
|
if cfg.model.load_from_checkpoint: |
|
model.maybe_init_from_pretrained_checkpoint(cfg=cfg.model) |
|
prepare_model_weights(model, cfg.model.trainerConfig.unfreeze_modules) |
|
lr_logger = pl.callbacks.LearningRateMonitor() |
|
epoch_time_logger = LogEpochTimeCallback() |
|
trainer.callbacks.extend([lr_logger, epoch_time_logger]) |
|
trainer.fit(model.cuda()) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|