|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import pytorch_lightning as pl |
|
|
|
from nemo.collections.common.callbacks import LogEpochTimeCallback |
|
from nemo.collections.tts.models import FastPitchModel |
|
from nemo.core.config import hydra_runner |
|
from nemo.utils import logging |
|
from nemo.utils.exp_manager import exp_manager |
|
|
|
|
|
@hydra_runner(config_path="conf", config_name="fastpitch_align_44100") |
|
def main(cfg): |
|
if hasattr(cfg.model.optim, 'sched'): |
|
logging.warning("You are using an optimizer scheduler while finetuning. Are you sure this is intended?") |
|
if cfg.model.optim.lr > 1e-3 or cfg.model.optim.lr < 1e-5: |
|
logging.warning("The recommended learning rate for finetuning is 2e-4") |
|
trainer = pl.Trainer(**cfg.trainer) |
|
exp_manager(trainer, cfg.get("exp_manager", None)) |
|
model = FastPitchModel(cfg=cfg.model, trainer=trainer) |
|
model.maybe_init_from_pretrained_checkpoint(cfg=cfg) |
|
lr_logger = pl.callbacks.LearningRateMonitor() |
|
epoch_time_logger = LogEpochTimeCallback() |
|
trainer.callbacks.extend([lr_logger, epoch_time_logger]) |
|
trainer.fit(model) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|