|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import pytorch_lightning as pl |
|
import torch |
|
from omegaconf import OmegaConf |
|
from pytorch_lightning import seed_everything |
|
|
|
from nemo.collections.asr.models import EncDecSpeakerLabelModel |
|
from nemo.core.config import hydra_runner |
|
from nemo.utils import logging |
|
from nemo.utils.exp_manager import exp_manager |
|
|
|
seed_everything(42) |
|
|
|
|
|
@hydra_runner(config_path="conf", config_name="titanet-finetune.yaml") |
|
def main(cfg): |
|
|
|
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') |
|
trainer = pl.Trainer(**cfg.trainer) |
|
log_dir = exp_manager(trainer, cfg.get("exp_manager", None)) |
|
speaker_model = EncDecSpeakerLabelModel(cfg=cfg.model, trainer=trainer) |
|
speaker_model.maybe_init_from_pretrained_checkpoint(cfg) |
|
|
|
|
|
if log_dir is not None: |
|
with open(os.path.join(log_dir, 'labels.txt'), 'w') as f: |
|
if speaker_model.labels is not None: |
|
for label in speaker_model.labels: |
|
f.write(f'{label}\n') |
|
|
|
trainer.fit(speaker_model) |
|
|
|
torch.distributed.destroy_process_group() |
|
if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None: |
|
if trainer.is_global_zero: |
|
trainer = pl.Trainer(devices=1, accelerator=cfg.trainer.accelerator, strategy=cfg.trainer.strategy) |
|
if speaker_model.prepare_test(trainer): |
|
trainer.test(speaker_model) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|