|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This is a helper script to extract speaker embeddings based on manifest file |
|
Usage: |
|
python extract_speaker_embeddings.py --manifest=/path/to/manifest/file' |
|
--model_path='/path/to/.nemo/file'(optional) |
|
--embedding_dir='/path/to/embedding/directory' |
|
|
|
Args: |
|
--manifest: path to manifest file containing audio_file paths for which embeddings need to be extracted |
|
--model_path(optional): path to .nemo speaker verification model file to extract embeddings, if not passed SpeakerNet-M model would |
|
be downloaded from NGC and used to extract embeddings |
|
--embeddings_dir(optional): path to directory where embeddings need to stored default:'./' |
|
|
|
|
|
""" |
|
|
|
import json |
|
import os |
|
import pickle as pkl |
|
from argparse import ArgumentParser |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from nemo.collections.asr.models.label_models import EncDecSpeakerLabelModel |
|
from nemo.collections.asr.parts.utils.speaker_utils import embedding_normalize |
|
from nemo.utils import logging |
|
|
|
|
|
def get_embeddings(speaker_model, manifest_file, batch_size=1, embedding_dir='./', device='cuda'): |
|
""" |
|
save embeddings to pickle file |
|
Args: |
|
speaker_model: NeMo <EncDecSpeakerLabel> model |
|
manifest_file: path to the manifest file containing the audio file path from which the |
|
embeddings should be extracted |
|
batch_size: batch_size for inference |
|
embedding_dir: path to directory to store embeddings file |
|
device: compute device to perform operations |
|
""" |
|
|
|
all_embs, _, _, _ = speaker_model.batch_inference(manifest_file, batch_size=batch_size, device=device) |
|
all_embs = np.asarray(all_embs) |
|
all_embs = embedding_normalize(all_embs) |
|
out_embeddings = {} |
|
|
|
with open(manifest_file, 'r', encoding='utf-8') as manifest: |
|
for i, line in enumerate(manifest.readlines()): |
|
line = line.strip() |
|
dic = json.loads(line) |
|
uniq_name = '@'.join(dic['audio_filepath'].split('/')[-3:]) |
|
out_embeddings[uniq_name] = all_embs[i] |
|
|
|
embedding_dir = os.path.join(embedding_dir, 'embeddings') |
|
if not os.path.exists(embedding_dir): |
|
os.makedirs(embedding_dir, exist_ok=True) |
|
|
|
prefix = manifest_file.split('/')[-1].rsplit('.', 1)[-2] |
|
|
|
name = os.path.join(embedding_dir, prefix) |
|
embeddings_file = name + '_embeddings.pkl' |
|
pkl.dump(out_embeddings, open(embeddings_file, 'wb')) |
|
logging.info("Saved embedding files to {}".format(embedding_dir)) |
|
|
|
|
|
def main(): |
|
parser = ArgumentParser() |
|
parser.add_argument( |
|
"--manifest", type=str, required=True, help="Path to manifest file", |
|
) |
|
parser.add_argument( |
|
"--model_path", |
|
type=str, |
|
default='titanet_large', |
|
required=False, |
|
help="path to .nemo speaker verification model file to extract embeddings, if not passed SpeakerNet-M model would be downloaded from NGC and used to extract embeddings", |
|
) |
|
parser.add_argument( |
|
"--batch_size", type=int, default=1, required=False, help="batch size", |
|
) |
|
parser.add_argument( |
|
"--embedding_dir", |
|
type=str, |
|
default='./', |
|
required=False, |
|
help="path to directory where embeddings need to stored default:'./'", |
|
) |
|
args = parser.parse_args() |
|
torch.set_grad_enabled(False) |
|
|
|
if args.model_path.endswith('.nemo'): |
|
logging.info(f"Using local speaker model from {args.model_path}") |
|
speaker_model = EncDecSpeakerLabelModel.restore_from(restore_path=args.model_path) |
|
elif args.model_path.endswith('.ckpt'): |
|
speaker_model = EncDecSpeakerLabelModel.load_from_checkpoint(checkpoint_path=args.model_path) |
|
else: |
|
speaker_model = EncDecSpeakerLabelModel.from_pretrained(model_name="titanet_large") |
|
logging.info(f"using pretrained titanet_large speaker model from NGC") |
|
|
|
device = 'cuda' |
|
if not torch.cuda.is_available(): |
|
device = 'cpu' |
|
logging.warning("Running model on CPU, for faster performance it is adviced to use atleast one NVIDIA GPUs") |
|
|
|
get_embeddings( |
|
speaker_model, args.manifest, batch_size=args.batch_size, embedding_dir=args.embedding_dir, device=device |
|
) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|