|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
|
|
from omegaconf import DictConfig, OmegaConf |
|
|
|
from nemo.collections.nlp.models import ZeroShotIntentModel |
|
from nemo.core.config import hydra_runner |
|
from nemo.utils import logging |
|
|
|
|
|
@hydra_runner(config_path="conf", config_name="zero_shot_intent_config") |
|
def main(cfg: DictConfig) -> None: |
|
logging.info(f'Config Params:\n {OmegaConf.to_yaml(cfg)}') |
|
|
|
|
|
if cfg.pretrained_model and os.path.exists(cfg.pretrained_model): |
|
model = ZeroShotIntentModel.restore_from(cfg.pretrained_model, strict=False) |
|
else: |
|
raise ValueError('Provide path to the pre-trained .nemo checkpoint') |
|
|
|
|
|
queries = [ |
|
"I'd like a veggie burger and fries", |
|
"Turn off the lights in the living room", |
|
] |
|
|
|
candidate_labels = ['Food order', 'Play music', 'Request for directions', 'Change lighting', 'Calendar query'] |
|
|
|
predictions = model.predict(queries, candidate_labels, batch_size=4, multi_label=True) |
|
|
|
logging.info('The prediction results of some sample queries with the trained model:') |
|
for query in predictions: |
|
logging.info(json.dumps(query, indent=4)) |
|
logging.info("Inference finished!") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|