NeMo / examples /nlp /language_modeling /megatron_gpt_test.py
camenduru's picture
thanks to NVIDIA ❤
7934b29
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from omegaconf.omegaconf import OmegaConf
from pytorch_lightning import Trainer
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel
from nemo.collections.nlp.modules.common.megatron.megatron_utils import compute_model_parallel_rank
from nemo.collections.nlp.parts.nlp_overrides import (
NLPDDPStrategy,
NLPNativeMixedPrecisionPlugin,
NLPPrecisionPlugin,
NLPSaveRestoreConnector,
)
from nemo.core.config import hydra_runner
from nemo.utils import logging
from nemo.utils.app_state import AppState
@hydra_runner(config_path="conf", config_name="megatron_gpt_config")
def main(cfg) -> None:
logging.info("\n\n************** Experiment configuration ***********")
logging.info(f'\n{OmegaConf.to_yaml(cfg)}')
trainer = None
if cfg.trainer.precision == 16:
trainer = Trainer(
plugins=[
NLPNativeMixedPrecisionPlugin(
init_scale=cfg.model.get('native_amp_init_scale', 2 ** 32),
growth_interval=cfg.model.get('native_amp_growth_interval', 1000),
),
],
strategy=NLPDDPStrategy(),
**cfg.trainer,
)
elif cfg.trainer.precision == 'bf16':
trainer = Trainer(plugins=[NLPNativeBfloat16PrecisionPlugin(),], strategy=NLPDDPStrategy(), **cfg.trainer,)
else:
trainer = Trainer(plugins=[NLPPrecisionPlugin()], strategy=NLPDDPStrategy(), **cfg.trainer)
app_state = AppState()
app_state.model_parallel_size = cfg.model.tensor_model_parallel_size
app_state.model_parallel_rank = compute_model_parallel_rank(trainer.local_rank, app_state.model_parallel_size)
model = MegatronGPTModel.restore_from(
cfg.restore_from_path, trainer=trainer, save_restore_connector=NLPSaveRestoreConnector(),
)
# Note: most nemo models must have the data paths configured before instantiating the model
# MegatronGPTMOdel sets up the data in the PTL method .setup which happens after DDP spawns.
model.cfg.data.splits_string = cfg.model.data.splits_string
trainer.test(model)
if __name__ == '__main__':
main()