NeMo / examples /nlp /language_modeling /bert_pretraining.py
camenduru's picture
thanks to NVIDIA ❤
7934b29
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytorch_lightning as pl
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.strategies import DDPStrategy
from nemo.collections.nlp.models.language_modeling import BERTLMModel
from nemo.core.config import hydra_runner
from nemo.utils import logging
from nemo.utils.exp_manager import exp_manager
@hydra_runner(config_path="conf", config_name="bert_pretraining_from_text_config")
def main(cfg: DictConfig) -> None:
logging.info(f'Config:\n {OmegaConf.to_yaml(cfg)}')
trainer = pl.Trainer(strategy=DDPStrategy(find_unused_parameters=True), **cfg.trainer)
exp_manager(trainer, cfg.get("exp_manager", None))
bert_model = BERTLMModel(cfg.model, trainer=trainer)
trainer.fit(bert_model)
if cfg.model.nemo_path:
bert_model.save_to(cfg.model.nemo_path)
if __name__ == '__main__':
main()