camaosos commited on
Commit
154098c
·
verified ·
1 Parent(s): 4ec40fa

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: Pasivo ahorro y retiro job mejor atención y disponibilidad
14
+ - text: Detractor ahorro y retiro ahorro y retiro premium La atenció telefónica no
15
+ es buena solo habla una maquina y nunca responde una persona para que le ayude
16
+ a uno y poder expresar lo que se necesita.
17
+ - text: Detractor gestión patrimonial alto perfil Difícil hacer una gestión por la
18
+ página. No he podido retirar un saldo porque no llevo carta y no me dicen qué
19
+ hacer si esa empresa ya no existe
20
+ - text: Detractor ahorro y retiro dynamic top POrque tengo una inversion y hace tiempo
21
+ que no se contacta mi asesor conmigo, le escribí un correo hace unos días y no
22
+ me contestó, cambie de celular y no he podido actiualizarlo, estoy buscando como
23
+ sacar mi dinero de alla, por la mala experiencia.
24
+ - text: Detractor ahorro y retiro pensionado Empecé el proceso en****, y terminé consiguiéndolo
25
+ en el****, me dejé en el camino más de 250€ en llamadas desde España a Colombia,
26
+ y cada mes me toca pagar para traer el dinero de mi pensión hasta España porque
27
+ no hay convenios con los bancos, pierdes en el año más o menos el 80% de una mesada.
28
+ inference: true
29
+ model-index:
30
+ - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
31
+ results:
32
+ - task:
33
+ type: text-classification
34
+ name: Text Classification
35
+ dataset:
36
+ name: Unknown
37
+ type: unknown
38
+ split: test
39
+ metrics:
40
+ - type: accuracy
41
+ value: 0.8823529411764706
42
+ name: Accuracy
43
+ ---
44
+
45
+ # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
46
+
47
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
48
+
49
+ The model has been trained using an efficient few-shot learning technique that involves:
50
+
51
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
52
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
53
+
54
+ ## Model Details
55
+
56
+ ### Model Description
57
+ - **Model Type:** SetFit
58
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
59
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
60
+ - **Maximum Sequence Length:** 128 tokens
61
+ - **Number of Classes:** 4 classes
62
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
63
+ <!-- - **Language:** Unknown -->
64
+ <!-- - **License:** Unknown -->
65
+
66
+ ### Model Sources
67
+
68
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
69
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
70
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
71
+
72
+ ### Model Labels
73
+ | Label | Examples |
74
+ |:----------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
75
+ | Construcción de mi pensión personas | <ul><li>'Promotor ahorro y retiro job Excelente servicio'</li><li>'Promotor ahorro y retiro pensionado Asesoría sobre las modalidades de pensión'</li><li>'Pasivo ahorro y retiro hni job Mejorar la asesoría personalizada según el nivel de ingresos de la persona'</li></ul> |
76
+ | Solución de ahorro e inversión personas | <ul><li>'Detractor ahorro y retiro job No estoy muy relacionada con el tema'</li><li>'Detractor gestión patrimonial alto perfil Mal servicio por desconocimiento, decisiones unilaterales de Proteccion que afectan a los usuarios, falta de trasparencia en negociones de bonos, falta de soportes aritmeticos y financieros en sus datos a clientes, etc, ect.'</li><li>'Pasivo ahorro y retiro job Asesor pendiente del ahorro sea mucho o poco para tener más rendimientos.'</li></ul> |
77
+ | Cesantías Personas | <ul><li>'Detractor gestión patrimonial alto perfil No me volvieron a enviar información de mi estado de cuenta de las cesantías'</li></ul> |
78
+ | Construcción de mi pensión empresas | <ul><li>'Detractor ahorro y retiro ahorro y retiro basic No contamos con acompañamiento.'</li><li>'Promotor grandes empleadores grandes empleadores el reconocimiento y trayectoria'</li><li>'Pasivo ahorro y retiro ahorro y retiro basic Mejor asesoramiento'</li></ul> |
79
+
80
+ ## Evaluation
81
+
82
+ ### Metrics
83
+ | Label | Accuracy |
84
+ |:--------|:---------|
85
+ | **all** | 0.8824 |
86
+
87
+ ## Uses
88
+
89
+ ### Direct Use for Inference
90
+
91
+ First install the SetFit library:
92
+
93
+ ```bash
94
+ pip install setfit
95
+ ```
96
+
97
+ Then you can load this model and run inference.
98
+
99
+ ```python
100
+ from setfit import SetFitModel
101
+
102
+ # Download from the 🤗 Hub
103
+ model = SetFitModel.from_pretrained("camaosos/journey")
104
+ # Run inference
105
+ preds = model("Pasivo ahorro y retiro job mejor atención y disponibilidad")
106
+ ```
107
+
108
+ <!--
109
+ ### Downstream Use
110
+
111
+ *List how someone could finetune this model on their own dataset.*
112
+ -->
113
+
114
+ <!--
115
+ ### Out-of-Scope Use
116
+
117
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
118
+ -->
119
+
120
+ <!--
121
+ ## Bias, Risks and Limitations
122
+
123
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
124
+ -->
125
+
126
+ <!--
127
+ ### Recommendations
128
+
129
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
130
+ -->
131
+
132
+ ## Training Details
133
+
134
+ ### Training Set Metrics
135
+ | Training set | Min | Median | Max |
136
+ |:-------------|:----|:--------|:----|
137
+ | Word count | 5 | 18.7576 | 169 |
138
+
139
+ | Label | Training Sample Count |
140
+ |:----------------------------------------|:----------------------|
141
+ | Cesantías Personas | 1 |
142
+ | Construcción de mi pensión empresas | 8 |
143
+ | Construcción de mi pensión personas | 31 |
144
+ | Solución de ahorro e inversión personas | 26 |
145
+
146
+ ### Training Hyperparameters
147
+ - batch_size: (16, 16)
148
+ - num_epochs: (4, 4)
149
+ - max_steps: -1
150
+ - sampling_strategy: oversampling
151
+ - body_learning_rate: (2e-05, 1e-05)
152
+ - head_learning_rate: 0.01
153
+ - loss: CosineSimilarityLoss
154
+ - distance_metric: cosine_distance
155
+ - margin: 0.25
156
+ - end_to_end: False
157
+ - use_amp: False
158
+ - warmup_proportion: 0.1
159
+ - seed: 42
160
+ - eval_max_steps: -1
161
+ - load_best_model_at_end: True
162
+
163
+ ### Training Results
164
+ | Epoch | Step | Training Loss | Validation Loss |
165
+ |:-------:|:-------:|:-------------:|:---------------:|
166
+ | 0.0060 | 1 | 0.1959 | - |
167
+ | 0.3012 | 50 | 0.196 | - |
168
+ | 0.6024 | 100 | 0.0082 | - |
169
+ | 0.9036 | 150 | 0.0016 | - |
170
+ | 1.0 | 166 | - | 0.1009 |
171
+ | 1.2048 | 200 | 0.0012 | - |
172
+ | 1.5060 | 250 | 0.0012 | - |
173
+ | 1.8072 | 300 | 0.0004 | - |
174
+ | **2.0** | **332** | **-** | **0.095** |
175
+ | 2.1084 | 350 | 0.0005 | - |
176
+ | 2.4096 | 400 | 0.0004 | - |
177
+ | 2.7108 | 450 | 0.0005 | - |
178
+ | 3.0 | 498 | - | 0.1009 |
179
+ | 3.0120 | 500 | 0.0005 | - |
180
+ | 3.3133 | 550 | 0.0003 | - |
181
+ | 3.6145 | 600 | 0.0003 | - |
182
+ | 3.9157 | 650 | 0.0011 | - |
183
+ | 4.0 | 664 | - | 0.1002 |
184
+
185
+ * The bold row denotes the saved checkpoint.
186
+ ### Framework Versions
187
+ - Python: 3.10.10
188
+ - SetFit: 1.0.3
189
+ - Sentence Transformers: 3.0.1
190
+ - Transformers: 4.42.3
191
+ - PyTorch: 2.2.1+cu121
192
+ - Datasets: 2.20.0
193
+ - Tokenizers: 0.19.1
194
+
195
+ ## Citation
196
+
197
+ ### BibTeX
198
+ ```bibtex
199
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
200
+ doi = {10.48550/ARXIV.2209.11055},
201
+ url = {https://arxiv.org/abs/2209.11055},
202
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
203
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
204
+ title = {Efficient Few-Shot Learning Without Prompts},
205
+ publisher = {arXiv},
206
+ year = {2022},
207
+ copyright = {Creative Commons Attribution 4.0 International}
208
+ }
209
+ ```
210
+
211
+ <!--
212
+ ## Glossary
213
+
214
+ *Clearly define terms in order to be accessible across audiences.*
215
+ -->
216
+
217
+ <!--
218
+ ## Model Card Authors
219
+
220
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
221
+ -->
222
+
223
+ <!--
224
+ ## Model Card Contact
225
+
226
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
227
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_332",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.3",
5
+ "pytorch": "2.2.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "Cesant\u00edas Personas",
5
+ "Construcci\u00f3n de mi pensi\u00f3n empresas",
6
+ "Construcci\u00f3n de mi pensi\u00f3n personas",
7
+ "Soluci\u00f3n de ahorro e inversi\u00f3n personas"
8
+ ]
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90a04ca1e7963a480d726f79b408a1f3cb915c1da0df27712fe6cca369160045
3
+ size 470637416
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea735b8888ff01f56dfb496a41bc9de31b6d73c30d7ec7e85463ad9125220f88
3
+ size 13783
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260