End of training
Browse files
README.md
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: vakyansh-wav2vec2-bengali-bnm-200-audio-abuse-feature
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# vakyansh-wav2vec2-bengali-bnm-200-audio-abuse-feature
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.8024
|
20 |
+
- Accuracy: 0.6459
|
21 |
+
- Macro F1-score: 0.6339
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 16
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 64
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 50
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1-score |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------:|
|
55 |
+
| 6.7346 | 0.77 | 10 | 6.7291 | 0.0 | 0.0 |
|
56 |
+
| 6.6926 | 1.54 | 20 | 6.6304 | 0.0027 | 0.0004 |
|
57 |
+
| 6.5587 | 2.31 | 30 | 6.4243 | 0.5730 | 0.2830 |
|
58 |
+
| 6.3449 | 3.08 | 40 | 6.1051 | 0.5649 | 0.5571 |
|
59 |
+
| 6.1232 | 3.85 | 50 | 5.7862 | 0.4216 | 0.3430 |
|
60 |
+
| 5.8191 | 4.62 | 60 | 5.5131 | 0.4027 | 0.2908 |
|
61 |
+
| 5.592 | 5.38 | 70 | 5.2719 | 0.5216 | 0.5022 |
|
62 |
+
| 5.3414 | 6.15 | 80 | 5.0558 | 0.6189 | 0.6186 |
|
63 |
+
| 5.1331 | 6.92 | 90 | 4.8552 | 0.6865 | 0.6852 |
|
64 |
+
| 4.98 | 7.69 | 100 | 4.6603 | 0.6568 | 0.6567 |
|
65 |
+
| 4.7844 | 8.46 | 110 | 4.4634 | 0.6703 | 0.6702 |
|
66 |
+
| 4.7028 | 9.23 | 120 | 4.2715 | 0.6568 | 0.6567 |
|
67 |
+
| 4.4476 | 10.0 | 130 | 4.0733 | 0.6297 | 0.6280 |
|
68 |
+
| 4.2098 | 10.77 | 140 | 3.8749 | 0.6108 | 0.6041 |
|
69 |
+
| 4.0715 | 11.54 | 150 | 3.6803 | 0.5027 | 0.4564 |
|
70 |
+
| 3.8545 | 12.31 | 160 | 3.4603 | 0.6649 | 0.6648 |
|
71 |
+
| 3.708 | 13.08 | 170 | 3.2559 | 0.6541 | 0.6534 |
|
72 |
+
| 3.4318 | 13.85 | 180 | 3.0493 | 0.6676 | 0.6675 |
|
73 |
+
| 3.1874 | 14.62 | 190 | 2.8456 | 0.6838 | 0.6837 |
|
74 |
+
| 3.1887 | 15.38 | 200 | 2.6625 | 0.5595 | 0.5384 |
|
75 |
+
| 2.8359 | 16.15 | 210 | 2.4679 | 0.5757 | 0.5604 |
|
76 |
+
| 2.6265 | 16.92 | 220 | 2.2662 | 0.6892 | 0.6841 |
|
77 |
+
| 2.4536 | 17.69 | 230 | 2.0843 | 0.6649 | 0.6644 |
|
78 |
+
| 2.2288 | 18.46 | 240 | 1.9218 | 0.6459 | 0.6431 |
|
79 |
+
| 2.2955 | 19.23 | 250 | 1.7633 | 0.6595 | 0.6578 |
|
80 |
+
| 1.9739 | 20.0 | 260 | 1.6105 | 0.6730 | 0.6671 |
|
81 |
+
| 1.8575 | 20.77 | 270 | 1.4855 | 0.6378 | 0.6351 |
|
82 |
+
| 1.607 | 21.54 | 280 | 1.3582 | 0.6649 | 0.6646 |
|
83 |
+
| 1.4831 | 22.31 | 290 | 1.2425 | 0.6676 | 0.6646 |
|
84 |
+
| 1.4484 | 23.08 | 300 | 1.1522 | 0.6703 | 0.6660 |
|
85 |
+
| 1.2517 | 23.85 | 310 | 1.0688 | 0.6595 | 0.6554 |
|
86 |
+
| 1.2793 | 24.62 | 320 | 1.0006 | 0.6541 | 0.6523 |
|
87 |
+
| 1.0722 | 25.38 | 330 | 0.9486 | 0.6568 | 0.6543 |
|
88 |
+
| 0.9888 | 26.15 | 340 | 0.9292 | 0.6135 | 0.6135 |
|
89 |
+
| 0.9134 | 26.92 | 350 | 0.8580 | 0.6514 | 0.6492 |
|
90 |
+
| 0.9208 | 27.69 | 360 | 0.8352 | 0.6649 | 0.6646 |
|
91 |
+
| 0.966 | 28.46 | 370 | 0.8220 | 0.6162 | 0.6160 |
|
92 |
+
| 0.8746 | 29.23 | 380 | 0.8064 | 0.6568 | 0.6420 |
|
93 |
+
| 0.8619 | 30.0 | 390 | 0.7856 | 0.6405 | 0.5942 |
|
94 |
+
| 0.841 | 30.77 | 400 | 0.7612 | 0.6459 | 0.6020 |
|
95 |
+
| 0.7629 | 31.54 | 410 | 0.7441 | 0.6459 | 0.6434 |
|
96 |
+
| 0.6736 | 32.31 | 420 | 0.7610 | 0.6568 | 0.6562 |
|
97 |
+
| 0.6579 | 33.08 | 430 | 0.7624 | 0.6514 | 0.6456 |
|
98 |
+
| 0.7514 | 33.85 | 440 | 0.7374 | 0.6649 | 0.6467 |
|
99 |
+
| 0.6579 | 34.62 | 450 | 0.7503 | 0.6541 | 0.6471 |
|
100 |
+
| 0.6864 | 35.38 | 460 | 0.8286 | 0.5892 | 0.5889 |
|
101 |
+
| 0.6863 | 36.15 | 470 | 0.7393 | 0.6541 | 0.6396 |
|
102 |
+
| 0.6224 | 36.92 | 480 | 0.7427 | 0.6541 | 0.6507 |
|
103 |
+
| 0.6255 | 37.69 | 490 | 0.7495 | 0.6405 | 0.6268 |
|
104 |
+
| 0.5295 | 38.46 | 500 | 0.7787 | 0.6486 | 0.6385 |
|
105 |
+
| 0.5549 | 39.23 | 510 | 0.7909 | 0.6378 | 0.6360 |
|
106 |
+
| 0.5752 | 40.0 | 520 | 0.7631 | 0.6459 | 0.6361 |
|
107 |
+
| 0.616 | 40.77 | 530 | 0.7636 | 0.6432 | 0.6390 |
|
108 |
+
| 0.5038 | 41.54 | 540 | 0.7847 | 0.6514 | 0.6372 |
|
109 |
+
| 0.5935 | 42.31 | 550 | 0.7837 | 0.6595 | 0.6461 |
|
110 |
+
| 0.5453 | 43.08 | 560 | 0.7804 | 0.6405 | 0.6330 |
|
111 |
+
| 0.5378 | 43.85 | 570 | 0.7928 | 0.6514 | 0.6338 |
|
112 |
+
| 0.4852 | 44.62 | 580 | 0.8249 | 0.6324 | 0.6285 |
|
113 |
+
| 0.5198 | 45.38 | 590 | 0.8065 | 0.6459 | 0.6186 |
|
114 |
+
| 0.5067 | 46.15 | 600 | 0.8210 | 0.6162 | 0.6107 |
|
115 |
+
| 0.5533 | 46.92 | 610 | 0.8053 | 0.6432 | 0.6300 |
|
116 |
+
| 0.6282 | 47.69 | 620 | 0.7970 | 0.6459 | 0.6316 |
|
117 |
+
| 0.5617 | 48.46 | 630 | 0.8095 | 0.6243 | 0.6165 |
|
118 |
+
| 0.5016 | 49.23 | 640 | 0.8038 | 0.6378 | 0.6274 |
|
119 |
+
| 0.467 | 50.0 | 650 | 0.8024 | 0.6459 | 0.6339 |
|
120 |
+
|
121 |
+
|
122 |
+
### Framework versions
|
123 |
+
|
124 |
+
- Transformers 4.33.0
|
125 |
+
- Pytorch 2.0.0
|
126 |
+
- Datasets 2.1.0
|
127 |
+
- Tokenizers 0.13.3
|