gpt2_774m_0910 / stdout.log
calico-1226's picture
Upload models
2227ae5
[2024-09-10 21:10:22,658] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
 [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
 [WARNING]  async_io: please install the libaio-dev package with apt
 [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
 [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
 [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
 [WARNING]  using untested triton version (2.3.1), only 1.0.0 is known to be compatible
[2024-09-10 21:10:25,566] [WARNING] [runner.py:202:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only.
[2024-09-10 21:10:25,566] [INFO] [runner.py:568:main] cmd = /home/juntao/Miniconda3/envs/roo/bin/python -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbMCwgMSwgMiwgMywgNCwgNSwgNiwgN119 --master_addr=127.0.0.1 --master_port=21326 --module --enable_each_rank_log=None safe_rlhf.values.score_lm --train_datasets PrefOnlyRewardJSON01::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/train.json --eval_datasets PrefOnlyRewardJSON02::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/test.json --model_name_or_path /home/juntao/Projects/roo-dev-cty/models/proxy_model/gpt2-774m --max_length 1024 --trust_remote_code True --loss_type sequence-wise --epochs 2 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --gradient_accumulation_steps 4 --gradient_checkpointing --regularization 0.001 --normalize_score_during_training False --normalizer_type ExponentialMovingAverage --normalizer_momentum 0.9 --learning_rate 2e-5 --lr_scheduler_type cosine --lr_warmup_ratio 0.03 --weight_decay 0.1 --lm_coef 0.01 --seed 42 --need_eval --eval_strategy epoch --output_dir /home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910 --log_type wandb --log_project score_lm --log_run_name gpt2_774m_0910 --zero_stage 3 --offload none --bf16 True --tf32 True --save_16bit
[2024-09-10 21:10:27,116] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
 [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
 [WARNING]  async_io: please install the libaio-dev package with apt
 [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
 [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
 [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
 [WARNING]  using untested triton version (2.3.1), only 1.0.0 is known to be compatible
[2024-09-10 21:10:29,339] [INFO] [launch.py:146:main] WORLD INFO DICT: {'localhost': [0, 1, 2, 3, 4, 5, 6, 7]}
[2024-09-10 21:10:29,339] [INFO] [launch.py:152:main] nnodes=1, num_local_procs=8, node_rank=0
[2024-09-10 21:10:29,339] [INFO] [launch.py:163:main] global_rank_mapping=defaultdict(<class 'list'>, {'localhost': [0, 1, 2, 3, 4, 5, 6, 7]})
[2024-09-10 21:10:29,339] [INFO] [launch.py:164:main] dist_world_size=8
[2024-09-10 21:10:29,339] [INFO] [launch.py:168:main] Setting CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
[2024-09-10 21:10:29,340] [INFO] [launch.py:256:main] process 3553582 spawned with command: ['/home/juntao/Miniconda3/envs/roo/bin/python', '-u', '-m', 'safe_rlhf.values.score_lm', '--local_rank=0', '--train_datasets', 'PrefOnlyRewardJSON01::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/train.json', '--eval_datasets', 'PrefOnlyRewardJSON02::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/test.json', '--model_name_or_path', '/home/juntao/Projects/roo-dev-cty/models/proxy_model/gpt2-774m', '--max_length', '1024', '--trust_remote_code', 'True', '--loss_type', 'sequence-wise', '--epochs', '2', '--per_device_train_batch_size', '4', '--per_device_eval_batch_size', '4', '--gradient_accumulation_steps', '4', '--gradient_checkpointing', '--regularization', '0.001', '--normalize_score_during_training', 'False', '--normalizer_type', 'ExponentialMovingAverage', '--normalizer_momentum', '0.9', '--learning_rate', '2e-5', '--lr_scheduler_type', 'cosine', '--lr_warmup_ratio', '0.03', '--weight_decay', '0.1', '--lm_coef', '0.01', '--seed', '42', '--need_eval', '--eval_strategy', 'epoch', '--output_dir', '/home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910', '--log_type', 'wandb', '--log_project', 'score_lm', '--log_run_name', 'gpt2_774m_0910', '--zero_stage', '3', '--offload', 'none', '--bf16', 'True', '--tf32', 'True', '--save_16bit']
[2024-09-10 21:10:29,341] [INFO] [launch.py:256:main] process 3553583 spawned with command: ['/home/juntao/Miniconda3/envs/roo/bin/python', '-u', '-m', 'safe_rlhf.values.score_lm', '--local_rank=1', '--train_datasets', 'PrefOnlyRewardJSON01::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/train.json', '--eval_datasets', 'PrefOnlyRewardJSON02::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/test.json', '--model_name_or_path', '/home/juntao/Projects/roo-dev-cty/models/proxy_model/gpt2-774m', '--max_length', '1024', '--trust_remote_code', 'True', '--loss_type', 'sequence-wise', '--epochs', '2', '--per_device_train_batch_size', '4', '--per_device_eval_batch_size', '4', '--gradient_accumulation_steps', '4', '--gradient_checkpointing', '--regularization', '0.001', '--normalize_score_during_training', 'False', '--normalizer_type', 'ExponentialMovingAverage', '--normalizer_momentum', '0.9', '--learning_rate', '2e-5', '--lr_scheduler_type', 'cosine', '--lr_warmup_ratio', '0.03', '--weight_decay', '0.1', '--lm_coef', '0.01', '--seed', '42', '--need_eval', '--eval_strategy', 'epoch', '--output_dir', '/home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910', '--log_type', 'wandb', '--log_project', 'score_lm', '--log_run_name', 'gpt2_774m_0910', '--zero_stage', '3', '--offload', 'none', '--bf16', 'True', '--tf32', 'True', '--save_16bit']
[2024-09-10 21:10:29,343] [INFO] [launch.py:256:main] process 3553584 spawned with command: ['/home/juntao/Miniconda3/envs/roo/bin/python', '-u', '-m', 'safe_rlhf.values.score_lm', '--local_rank=2', '--train_datasets', 'PrefOnlyRewardJSON01::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/train.json', '--eval_datasets', 'PrefOnlyRewardJSON02::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/test.json', '--model_name_or_path', '/home/juntao/Projects/roo-dev-cty/models/proxy_model/gpt2-774m', '--max_length', '1024', '--trust_remote_code', 'True', '--loss_type', 'sequence-wise', '--epochs', '2', '--per_device_train_batch_size', '4', '--per_device_eval_batch_size', '4', '--gradient_accumulation_steps', '4', '--gradient_checkpointing', '--regularization', '0.001', '--normalize_score_during_training', 'False', '--normalizer_type', 'ExponentialMovingAverage', '--normalizer_momentum', '0.9', '--learning_rate', '2e-5', '--lr_scheduler_type', 'cosine', '--lr_warmup_ratio', '0.03', '--weight_decay', '0.1', '--lm_coef', '0.01', '--seed', '42', '--need_eval', '--eval_strategy', 'epoch', '--output_dir', '/home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910', '--log_type', 'wandb', '--log_project', 'score_lm', '--log_run_name', 'gpt2_774m_0910', '--zero_stage', '3', '--offload', 'none', '--bf16', 'True', '--tf32', 'True', '--save_16bit']
[2024-09-10 21:10:29,344] [INFO] [launch.py:256:main] process 3553585 spawned with command: ['/home/juntao/Miniconda3/envs/roo/bin/python', '-u', '-m', 'safe_rlhf.values.score_lm', '--local_rank=3', '--train_datasets', 'PrefOnlyRewardJSON01::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/train.json', '--eval_datasets', 'PrefOnlyRewardJSON02::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/test.json', '--model_name_or_path', '/home/juntao/Projects/roo-dev-cty/models/proxy_model/gpt2-774m', '--max_length', '1024', '--trust_remote_code', 'True', '--loss_type', 'sequence-wise', '--epochs', '2', '--per_device_train_batch_size', '4', '--per_device_eval_batch_size', '4', '--gradient_accumulation_steps', '4', '--gradient_checkpointing', '--regularization', '0.001', '--normalize_score_during_training', 'False', '--normalizer_type', 'ExponentialMovingAverage', '--normalizer_momentum', '0.9', '--learning_rate', '2e-5', '--lr_scheduler_type', 'cosine', '--lr_warmup_ratio', '0.03', '--weight_decay', '0.1', '--lm_coef', '0.01', '--seed', '42', '--need_eval', '--eval_strategy', 'epoch', '--output_dir', '/home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910', '--log_type', 'wandb', '--log_project', 'score_lm', '--log_run_name', 'gpt2_774m_0910', '--zero_stage', '3', '--offload', 'none', '--bf16', 'True', '--tf32', 'True', '--save_16bit']
[2024-09-10 21:10:29,345] [INFO] [launch.py:256:main] process 3553586 spawned with command: ['/home/juntao/Miniconda3/envs/roo/bin/python', '-u', '-m', 'safe_rlhf.values.score_lm', '--local_rank=4', '--train_datasets', 'PrefOnlyRewardJSON01::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/train.json', '--eval_datasets', 'PrefOnlyRewardJSON02::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/test.json', '--model_name_or_path', '/home/juntao/Projects/roo-dev-cty/models/proxy_model/gpt2-774m', '--max_length', '1024', '--trust_remote_code', 'True', '--loss_type', 'sequence-wise', '--epochs', '2', '--per_device_train_batch_size', '4', '--per_device_eval_batch_size', '4', '--gradient_accumulation_steps', '4', '--gradient_checkpointing', '--regularization', '0.001', '--normalize_score_during_training', 'False', '--normalizer_type', 'ExponentialMovingAverage', '--normalizer_momentum', '0.9', '--learning_rate', '2e-5', '--lr_scheduler_type', 'cosine', '--lr_warmup_ratio', '0.03', '--weight_decay', '0.1', '--lm_coef', '0.01', '--seed', '42', '--need_eval', '--eval_strategy', 'epoch', '--output_dir', '/home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910', '--log_type', 'wandb', '--log_project', 'score_lm', '--log_run_name', 'gpt2_774m_0910', '--zero_stage', '3', '--offload', 'none', '--bf16', 'True', '--tf32', 'True', '--save_16bit']
[2024-09-10 21:10:29,346] [INFO] [launch.py:256:main] process 3553587 spawned with command: ['/home/juntao/Miniconda3/envs/roo/bin/python', '-u', '-m', 'safe_rlhf.values.score_lm', '--local_rank=5', '--train_datasets', 'PrefOnlyRewardJSON01::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/train.json', '--eval_datasets', 'PrefOnlyRewardJSON02::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/test.json', '--model_name_or_path', '/home/juntao/Projects/roo-dev-cty/models/proxy_model/gpt2-774m', '--max_length', '1024', '--trust_remote_code', 'True', '--loss_type', 'sequence-wise', '--epochs', '2', '--per_device_train_batch_size', '4', '--per_device_eval_batch_size', '4', '--gradient_accumulation_steps', '4', '--gradient_checkpointing', '--regularization', '0.001', '--normalize_score_during_training', 'False', '--normalizer_type', 'ExponentialMovingAverage', '--normalizer_momentum', '0.9', '--learning_rate', '2e-5', '--lr_scheduler_type', 'cosine', '--lr_warmup_ratio', '0.03', '--weight_decay', '0.1', '--lm_coef', '0.01', '--seed', '42', '--need_eval', '--eval_strategy', 'epoch', '--output_dir', '/home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910', '--log_type', 'wandb', '--log_project', 'score_lm', '--log_run_name', 'gpt2_774m_0910', '--zero_stage', '3', '--offload', 'none', '--bf16', 'True', '--tf32', 'True', '--save_16bit']
[2024-09-10 21:10:29,348] [INFO] [launch.py:256:main] process 3553588 spawned with command: ['/home/juntao/Miniconda3/envs/roo/bin/python', '-u', '-m', 'safe_rlhf.values.score_lm', '--local_rank=6', '--train_datasets', 'PrefOnlyRewardJSON01::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/train.json', '--eval_datasets', 'PrefOnlyRewardJSON02::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/test.json', '--model_name_or_path', '/home/juntao/Projects/roo-dev-cty/models/proxy_model/gpt2-774m', '--max_length', '1024', '--trust_remote_code', 'True', '--loss_type', 'sequence-wise', '--epochs', '2', '--per_device_train_batch_size', '4', '--per_device_eval_batch_size', '4', '--gradient_accumulation_steps', '4', '--gradient_checkpointing', '--regularization', '0.001', '--normalize_score_during_training', 'False', '--normalizer_type', 'ExponentialMovingAverage', '--normalizer_momentum', '0.9', '--learning_rate', '2e-5', '--lr_scheduler_type', 'cosine', '--lr_warmup_ratio', '0.03', '--weight_decay', '0.1', '--lm_coef', '0.01', '--seed', '42', '--need_eval', '--eval_strategy', 'epoch', '--output_dir', '/home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910', '--log_type', 'wandb', '--log_project', 'score_lm', '--log_run_name', 'gpt2_774m_0910', '--zero_stage', '3', '--offload', 'none', '--bf16', 'True', '--tf32', 'True', '--save_16bit']
[2024-09-10 21:10:29,349] [INFO] [launch.py:256:main] process 3553589 spawned with command: ['/home/juntao/Miniconda3/envs/roo/bin/python', '-u', '-m', 'safe_rlhf.values.score_lm', '--local_rank=7', '--train_datasets', 'PrefOnlyRewardJSON01::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/train.json', '--eval_datasets', 'PrefOnlyRewardJSON02::/home/juntao/Projects/roo-dev-cty/data/roo/gold-generate-dataset-ultrafeedback/30k/test.json', '--model_name_or_path', '/home/juntao/Projects/roo-dev-cty/models/proxy_model/gpt2-774m', '--max_length', '1024', '--trust_remote_code', 'True', '--loss_type', 'sequence-wise', '--epochs', '2', '--per_device_train_batch_size', '4', '--per_device_eval_batch_size', '4', '--gradient_accumulation_steps', '4', '--gradient_checkpointing', '--regularization', '0.001', '--normalize_score_during_training', 'False', '--normalizer_type', 'ExponentialMovingAverage', '--normalizer_momentum', '0.9', '--learning_rate', '2e-5', '--lr_scheduler_type', 'cosine', '--lr_warmup_ratio', '0.03', '--weight_decay', '0.1', '--lm_coef', '0.01', '--seed', '42', '--need_eval', '--eval_strategy', 'epoch', '--output_dir', '/home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910', '--log_type', 'wandb', '--log_project', 'score_lm', '--log_run_name', 'gpt2_774m_0910', '--zero_stage', '3', '--offload', 'none', '--bf16', 'True', '--tf32', 'True', '--save_16bit']
[2024-09-10 21:10:31,934] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-09-10 21:10:31,977] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-09-10 21:10:32,047] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-09-10 21:10:32,054] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-09-10 21:10:32,082] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-09-10 21:10:32,127] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-09-10 21:10:32,127] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2024-09-10 21:10:32,186] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
 [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
 [WARNING]  async_io: please install the libaio-dev package with apt
 [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
 [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
 [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
 [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
 [WARNING]  async_io: please install the libaio-dev package with apt
 [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
 [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
 [WARNING]  async_io: please install the libaio-dev package with apt
 [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
 [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
 [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
 [WARNING]  async_io: please install the libaio-dev package with apt
 [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
 [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
 [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
 [WARNING]  async_io: please install the libaio-dev package with apt
 [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
 [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
 [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
 [WARNING]  async_io: please install the libaio-dev package with apt
 [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
 [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
 [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
 [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
 [WARNING]  using untested triton version (2.3.1), only 1.0.0 is known to be compatible
 [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
 [WARNING]  async_io: please install the libaio-dev package with apt
 [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
 [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
 [WARNING]  async_io: please install the libaio-dev package with apt
 [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
 [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
 [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
 [WARNING]  using untested triton version (2.3.1), only 1.0.0 is known to be compatible
 [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
 [WARNING]  using untested triton version (2.3.1), only 1.0.0 is known to be compatible
 [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
 [WARNING]  using untested triton version (2.3.1), only 1.0.0 is known to be compatible
 [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
 [WARNING]  using untested triton version (2.3.1), only 1.0.0 is known to be compatible
 [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
 [WARNING]  using untested triton version (2.3.1), only 1.0.0 is known to be compatible
 [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
 [WARNING]  using untested triton version (2.3.1), only 1.0.0 is known to be compatible
 [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
 [WARNING]  using untested triton version (2.3.1), only 1.0.0 is known to be compatible
[2024-09-10 21:10:38,687] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-09-10 21:10:38,855] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-09-10 21:10:39,029] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-09-10 21:10:39,034] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-09-10 21:10:39,090] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-09-10 21:10:39,133] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-09-10 21:10:39,180] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-09-10 21:10:39,211] [INFO] [comm.py:637:init_distributed] cdb=None
[2024-09-10 21:10:39,211] [INFO] [comm.py:668:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl
Set logger level to DEBUG.
[2024-09-10 21:10:44,377] [INFO] [partition_parameters.py:345:__exit__] finished initializing model - num_params = 439, num_elems = 0.84B
ninja: no work to do.
Time to load fused_adam op: 0.5585312843322754 seconds
Time to load fused_adam op: 0.607450008392334 seconds
Time to load fused_adam op: 0.6077747344970703 seconds
Time to load fused_adam op: 0.6062517166137695 seconds
Time to load fused_adam op: 0.6082189083099365 seconds
Time to load fused_adam op: 0.6088159084320068 seconds
Time to load fused_adam op: 0.6079161167144775 seconds
Time to load fused_adam op: 0.6089522838592529 seconds
[2024-09-10 21:10:51,954] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed info: version=0.14.4, git-hash=unknown, git-branch=unknown
[2024-09-10 21:10:51,954] [INFO] [comm.py:662:init_distributed] Distributed backend already initialized
[2024-09-10 21:10:51,989] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False
[2024-09-10 21:10:51,992] [INFO] [logging.py:96:log_dist] [Rank 0] Using client Optimizer as basic optimizer
[2024-09-10 21:10:51,992] [INFO] [logging.py:96:log_dist] [Rank 0] Removing param_group that has no 'params' in the basic Optimizer
[2024-09-10 21:10:52,028] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Basic Optimizer = FusedAdam
[2024-09-10 21:10:52,028] [INFO] [utils.py:56:is_zero_supported_optimizer] Checking ZeRO support for optimizer=FusedAdam type=<class 'deepspeed.ops.adam.fused_adam.FusedAdam'>
[2024-09-10 21:10:52,028] [INFO] [logging.py:96:log_dist] [Rank 0] Creating fp16 ZeRO stage 3 optimizer, MiCS is enabled False, Hierarchical params gather False
[2024-09-10 21:10:52,028] [INFO] [logging.py:96:log_dist] [Rank 0] Creating torch.bfloat16 ZeRO stage 3 optimizer
[2024-09-10 21:10:52,210] [INFO] [utils.py:781:see_memory_usage] Stage 3 initialize beginning
[2024-09-10 21:10:52,210] [INFO] [utils.py:782:see_memory_usage] MA 0.32 GB Max_MA 0.58 GB CA 0.66 GB Max_CA 1 GB
[2024-09-10 21:10:52,210] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.67 GB, percent = 3.9%
[2024-09-10 21:10:52,212] [INFO] [stage3.py:130:__init__] Reduce bucket size 500,000,000
[2024-09-10 21:10:52,212] [INFO] [stage3.py:131:__init__] Prefetch bucket size 30000000
[2024-09-10 21:10:52,354] [INFO] [utils.py:781:see_memory_usage] DeepSpeedZeRoOffload initialize [begin]
[2024-09-10 21:10:52,354] [INFO] [utils.py:782:see_memory_usage] MA 0.32 GB Max_MA 0.32 GB CA 0.66 GB Max_CA 1 GB
[2024-09-10 21:10:52,355] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.67 GB, percent = 3.9%
Parameter Offload: Total persistent parameters: 602881 in 292 params
[2024-09-10 21:10:52,518] [INFO] [utils.py:781:see_memory_usage] DeepSpeedZeRoOffload initialize [end]
[2024-09-10 21:10:52,518] [INFO] [utils.py:782:see_memory_usage] MA 0.22 GB Max_MA 0.34 GB CA 0.66 GB Max_CA 1 GB
[2024-09-10 21:10:52,518] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.67 GB, percent = 3.9%
[2024-09-10 21:10:52,666] [INFO] [utils.py:781:see_memory_usage] Before creating fp16 partitions
[2024-09-10 21:10:52,666] [INFO] [utils.py:782:see_memory_usage] MA 0.22 GB Max_MA 0.22 GB CA 0.66 GB Max_CA 1 GB
[2024-09-10 21:10:52,666] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.68 GB, percent = 3.9%
[2024-09-10 21:10:53,213] [INFO] [utils.py:781:see_memory_usage] After creating fp16 partitions: 2
[2024-09-10 21:10:53,213] [INFO] [utils.py:782:see_memory_usage] MA 0.22 GB Max_MA 0.22 GB CA 0.24 GB Max_CA 1 GB
[2024-09-10 21:10:53,213] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.73 GB, percent = 3.9%
[2024-09-10 21:10:53,381] [INFO] [utils.py:781:see_memory_usage] Before creating fp32 partitions
[2024-09-10 21:10:53,381] [INFO] [utils.py:782:see_memory_usage] MA 0.22 GB Max_MA 0.22 GB CA 0.24 GB Max_CA 0 GB
[2024-09-10 21:10:53,381] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.73 GB, percent = 3.9%
[2024-09-10 21:10:53,538] [INFO] [utils.py:781:see_memory_usage] After creating fp32 partitions
[2024-09-10 21:10:53,539] [INFO] [utils.py:782:see_memory_usage] MA 0.58 GB Max_MA 0.76 GB CA 0.78 GB Max_CA 1 GB
[2024-09-10 21:10:53,539] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.73 GB, percent = 3.9%
[2024-09-10 21:10:53,689] [INFO] [utils.py:781:see_memory_usage] Before initializing optimizer states
[2024-09-10 21:10:53,689] [INFO] [utils.py:782:see_memory_usage] MA 0.58 GB Max_MA 0.58 GB CA 0.78 GB Max_CA 1 GB
[2024-09-10 21:10:53,689] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.73 GB, percent = 3.9%
[2024-09-10 21:10:53,838] [INFO] [utils.py:781:see_memory_usage] After initializing optimizer states
[2024-09-10 21:10:53,839] [INFO] [utils.py:782:see_memory_usage] MA 0.58 GB Max_MA 0.94 GB CA 1.14 GB Max_CA 1 GB
[2024-09-10 21:10:53,839] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.73 GB, percent = 3.9%
[2024-09-10 21:10:53,841] [INFO] [stage3.py:486:_setup_for_real_optimizer] optimizer state initialized
[2024-09-10 21:10:54,868] [INFO] [utils.py:781:see_memory_usage] After initializing ZeRO optimizer
[2024-09-10 21:10:54,869] [INFO] [utils.py:782:see_memory_usage] MA 1.69 GB Max_MA 1.93 GB CA 2.07 GB Max_CA 2 GB
[2024-09-10 21:10:54,869] [INFO] [utils.py:789:see_memory_usage] CPU Virtual Memory: used = 39.72 GB, percent = 3.9%
[2024-09-10 21:10:54,869] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Final Optimizer = DeepSpeedZeroOptimizer_Stage3
[2024-09-10 21:10:54,869] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed using client LR scheduler
[2024-09-10 21:10:54,869] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed LR Scheduler = <torch.optim.lr_scheduler.LambdaLR object at 0x79a35fe0b8d0>
[2024-09-10 21:10:54,869] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skipped=0, lr=[0.0, 0.0], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:10:54,870] [INFO] [config.py:997:print] DeepSpeedEngine configuration:
[2024-09-10 21:10:54,870] [INFO] [config.py:1001:print] activation_checkpointing_config {
"partition_activations": false,
"contiguous_memory_optimization": false,
"cpu_checkpointing": false,
"number_checkpoints": null,
"synchronize_checkpoint_boundary": false,
"profile": false
}
[2024-09-10 21:10:54,870] [INFO] [config.py:1001:print] aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True}
[2024-09-10 21:10:54,870] [INFO] [config.py:1001:print] amp_enabled .................. False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] amp_params ................... False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] autotuning_config ............ {
"enabled": false,
"start_step": null,
"end_step": null,
"metric_path": null,
"arg_mappings": null,
"metric": "throughput",
"model_info": null,
"results_dir": "autotuning_results",
"exps_dir": "autotuning_exps",
"overwrite": true,
"fast": true,
"start_profile_step": 3,
"end_profile_step": 5,
"tuner_type": "gridsearch",
"tuner_early_stopping": 5,
"tuner_num_trials": 50,
"model_info_path": null,
"mp_size": 1,
"max_train_batch_size": null,
"min_train_batch_size": 1,
"max_train_micro_batch_size_per_gpu": 1.024000e+03,
"min_train_micro_batch_size_per_gpu": 1,
"num_tuning_micro_batch_sizes": 3
}
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] bfloat16_enabled ............. True
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] bfloat16_immediate_grad_update False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] checkpoint_parallel_write_pipeline False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] checkpoint_tag_validation_enabled True
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] checkpoint_tag_validation_fail False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] comms_config ................. <deepspeed.comm.config.DeepSpeedCommsConfig object at 0x79a35fe0dbd0>
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] communication_data_type ...... None
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] compression_config ........... {'weight_quantization': {'shared_parameters': {'enabled': False, 'quantizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_verbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ratio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_parameters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibration': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'schedule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'layer_reduction': {'enabled': False}}
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] curriculum_enabled_legacy .... False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] curriculum_params_legacy ..... False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] data_efficiency_config ....... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'curriculum_learning': {'enabled': False}}, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_token_lr_schedule': {'enabled': False}}}}
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] data_efficiency_enabled ...... False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] dataloader_drop_last ......... False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] disable_allgather ............ False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] dump_state ................... False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] dynamic_loss_scale_args ...... None
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] eigenvalue_enabled ........... False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] eigenvalue_gas_boundary_resolution 1
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] eigenvalue_layer_name ........ bert.encoder.layer
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] eigenvalue_layer_num ......... 0
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] eigenvalue_max_iter .......... 100
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] eigenvalue_stability ......... 1e-06
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] eigenvalue_tol ............... 0.01
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] eigenvalue_verbose ........... False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] elasticity_enabled ........... False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] flops_profiler_config ........ {
"enabled": false,
"recompute_fwd_factor": 0.0,
"profile_step": 1,
"module_depth": -1,
"top_modules": 1,
"detailed": true,
"output_file": null
}
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] fp16_auto_cast ............... None
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] fp16_enabled ................. False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] fp16_master_weights_and_gradients False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] global_rank .................. 0
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] grad_accum_dtype ............. None
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] gradient_accumulation_steps .. 4
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] gradient_clipping ............ 1.0
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] gradient_predivide_factor .... 1.0
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] graph_harvesting ............. False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] hybrid_engine ................ enabled=False max_out_tokens=512 inference_tp_size=1 release_inference_cache=False pin_parameters=True tp_gather_partition_size=8
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] initial_dynamic_scale ........ 1
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] load_universal_checkpoint .... False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] loss_scale ................... 1.0
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] memory_breakdown ............. False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] mics_hierarchial_params_gather False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] mics_shard_size .............. -1
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] monitor_config ............... tensorboard=TensorBoardConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') comet=CometConfig(enabled=False, samples_log_interval=100, project=None, workspace=None, api_key=None, experiment_name=None, experiment_key=None, online=None, mode=None) wandb=WandbConfig(enabled=False, group=None, team=None, project='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') enabled=False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] nebula_config ................ {
"enabled": false,
"persistent_storage_path": null,
"persistent_time_interval": 100,
"num_of_version_in_retention": 2,
"enable_nebula_load": true,
"load_path": null
}
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] optimizer_legacy_fusion ...... False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] optimizer_name ............... None
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] optimizer_params ............. None
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0, 'pipe_partitioned': True, 'grad_partitioned': True}
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] pld_enabled .................. False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] pld_params ................... False
[2024-09-10 21:10:54,871] [INFO] [config.py:1001:print] prescale_gradients ........... False
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] scheduler_name ............... None
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] scheduler_params ............. None
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] seq_parallel_communication_data_type torch.float32
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] sparse_attention ............. None
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] sparse_gradients_enabled ..... False
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] steps_per_print .............. 10
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] timers_config ................ enabled=True synchronized=True
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] train_batch_size ............. 128
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] train_micro_batch_size_per_gpu 4
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] use_data_before_expert_parallel_ False
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] use_node_local_storage ....... False
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] wall_clock_breakdown ......... False
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] weight_quantization_config ... None
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] world_size ................... 8
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] zero_allow_untested_optimizer False
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] zero_config .................. stage=3 contiguous_gradients=True reduce_scatter=True reduce_bucket_size=500,000,000 use_multi_rank_bucket_allreduce=True allgather_partitions=True allgather_bucket_size=500,000,000 overlap_comm=True load_from_fp32_weights=True elastic_checkpoint=False offload_param=DeepSpeedZeroOffloadParamConfig(device='none', nvme_path=None, buffer_count=5, buffer_size=100,000,000, max_in_cpu=1,000,000,000, pin_memory=False) offload_optimizer=DeepSpeedZeroOffloadOptimizerConfig(device='none', nvme_path=None, buffer_count=4, pin_memory=False, pipeline=False, pipeline_read=False, pipeline_write=False, fast_init=False, ratio=1.0) sub_group_size=1,000,000,000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_offload=None prefetch_bucket_size=30000000 param_persistence_threshold=10000 model_persistence_threshold=sys.maxsize max_live_parameters=30000000 max_reuse_distance=1,000,000,000 gather_16bit_weights_on_model_save=True use_all_reduce_for_fetch_params=False stage3_gather_fp16_weights_on_model_save=False ignore_unused_parameters=True legacy_stage1=False round_robin_gradients=False zero_hpz_partition_size=1 zero_quantized_weights=False zero_quantized_nontrainable_weights=False zero_quantized_gradients=False mics_shard_size=-1 mics_hierarchical_params_gather=False memory_efficient_linear=False pipeline_loading_checkpoint=False override_module_apply=True
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] zero_enabled ................. True
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] zero_force_ds_cpu_optimizer .. True
[2024-09-10 21:10:54,872] [INFO] [config.py:1001:print] zero_optimization_stage ...... 3
[2024-09-10 21:10:54,872] [INFO] [config.py:987:print_user_config] json = {
"train_batch_size": 128,
"train_micro_batch_size_per_gpu": 4,
"gradient_accumulation_steps": 4,
"steps_per_print": 10,
"zero_optimization": {
"stage": 3,
"offload_param": {
"device": "none"
},
"offload_optimizer": {
"device": "none"
},
"param_persistence_threshold": 1.000000e+04,
"max_live_parameters": 3.000000e+07,
"prefetch_bucket_size": 3.000000e+07,
"memory_efficient_linear": false,
"gather_16bit_weights_on_model_save": true
},
"gradient_clipping": 1.0,
"prescale_gradients": false,
"wall_clock_breakdown": false,
"hybrid_engine": {
"enabled": false,
"max_out_tokens": 512,
"inference_tp_size": 1,
"release_inference_cache": false,
"pin_parameters": true,
"tp_gather_partition_size": 8
},
"bf16": {
"enabled": true
}
}
***** Running training *****
***** Evaluating at the beginning *****
Evaluation: accuracy = 0.342000, reward_mean = 0.236833, reward_std = 0.019346
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
┃ prompt ┃ higher-reward response ┃ reward ┃ lower-reward response ┃ reward ┃
┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━┩
β”‚ BEGINNING OF CONVERSATION: USER: I would like to see a good β”‚ Sure! Google Colab is a great platform for running Python code β”‚ 0.233398 β”‚ Of course! I'm happy to help you with analyzing Python data β”‚ 0.221680 β”‚
β”‚ example of analyzing Python data using Colab. Show me a code β”‚ and analyzing data using Python libraries, like pandas, β”‚ β”‚ using Colab. β”‚ β”‚
β”‚ example. ASSISTANT: β”‚ matplotlib and seaborn. Here's a simple example using a β”‚ β”‚ First, let me clarify that Colab is a free-hosted Jupyter β”‚ β”‚
β”‚ β”‚ dataset about cars and analyzing the relationship between β”‚ β”‚ notebook browser that allows you to write and run Python code β”‚ β”‚
β”‚ β”‚ horsepower and miles per gallon (mpg). β”‚ β”‚ in your web browser. It's a great tool for data analysis and β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ visualization, and we can use it to analyze Python data using β”‚ β”‚
β”‚ β”‚ ```python β”‚ β”‚ various libraries and techniques. β”‚ β”‚
β”‚ β”‚ # Import necessary libraries β”‚ β”‚ Now, let's say we have a dataset of customer information for β”‚ β”‚
β”‚ β”‚ import pandas as pd β”‚ β”‚ an e-commerce website, and we want to analyze it using Colab. β”‚ β”‚
β”‚ β”‚ import matplotlib.pyplot as plt β”‚ β”‚ Here's an example of how we can do this: β”‚ β”‚
β”‚ β”‚ import seaborn as sns β”‚ β”‚ 1. First, let's import the necessary libraries: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ # Load a sample dataset about cars (available on seaborn β”‚ β”‚ !pip install pandas β”‚ β”‚
β”‚ β”‚ library) β”‚ β”‚ import pandas as pd β”‚ β”‚
β”‚ β”‚ df = sns.load_dataset('mpg') β”‚ β”‚ import numpy as np β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ import matplotlib.pyplot as plt β”‚ β”‚
β”‚ β”‚ # Print the first few rows of the dataset β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ print(df.head()) β”‚ β”‚ In this code, we're installing the `pandas` library for data β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ manipulation and analysis, and `numpy` for numerical β”‚ β”‚
β”‚ β”‚ # Visualize the relationship between 'horsepower' and'mpg' β”‚ β”‚ computations. We're also importing the `matplotlib` library β”‚ β”‚
β”‚ β”‚ plt.figure(figsize=(10, 5)) β”‚ β”‚ for data visualization. β”‚ β”‚
β”‚ β”‚ sns.scatterplot(x='horsepower', y='mpg', data=df) β”‚ β”‚ 2. Next, let's load the dataset: β”‚ β”‚
β”‚ β”‚ plt.title('Relationship between Horsepower and MPG') β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ plt.xlabel('Horsepower') β”‚ β”‚ customer_data = pd.read_csv('customer.csv') β”‚ β”‚
β”‚ β”‚ plt.ylabel('Miles per Gallon') β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ # Replace 'customer.csv' with the name of your dataset file β”‚ β”‚
β”‚ β”‚ # Display the plot β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ plt.show() β”‚ β”‚ This code reads the customer dataset from a CSV file named β”‚ β”‚
β”‚ β”‚ ``` β”‚ β”‚ `customer.csv`. Make sure to replace this with the actual β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ name of your dataset file. β”‚ β”‚
β”‚ β”‚ This code will create a scatter plot showing the relationship β”‚ β”‚ 3. Now, let's examine the dataset: β”‚ β”‚
β”‚ β”‚ between horsepower and miles per gallon (mpg) of various cars. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ The seaborn library comes with several built-in datasets, one β”‚ β”‚ print(customer_data.head()) β”‚ β”‚
β”‚ β”‚ of which is used in this example. You can also upload your β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ data files into your Colab notebook and load them into a β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ pandas DataFrame for analysis and visualization. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This code displays the first few rows of the dataset using β”‚ β”‚
β”‚ β”‚ To run the code shown above in Google Colab: β”‚ β”‚ the `head()` method of the `pd.DataFrame` object. This gives β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ us a quick rundown of what the dataset looks like. β”‚ β”‚
β”‚ β”‚ 1. Head over to https://colab.research.google.com β”‚ β”‚ 4. Let's analyze the dataset using some basic statistical β”‚ β”‚
β”‚ β”‚ 2. Click `File` > `New notebook` β”‚ β”‚ metrics: β”‚ β”‚
β”‚ β”‚ 3. Copy and paste the code into a code cell β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 4. Press `Shift` + `Enter` to execute the cell and see the β”‚ β”‚ print(customer_data.mean()) β”‚ β”‚
β”‚ β”‚ output below the cell β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This code calculates the mean of various columns in the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ dataset using the `mean()` method of the `pd.DataFrame` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ object. This gives us an idea of the average value of each β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ column. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ 5. Let's visualize the distribution of values in one of the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ columns: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ print(customer_data['age'].hist()) β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This code creates a histogram of the values in the `age` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ column using the `hist()` method of the `pd.Series` object. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This gives us a visual representation of the distribution of β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ages in the dataset. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ 6. Finally, let's analyze the data using a machine learning β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ algorithm: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ from sklearn.cluster import KMeans β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ customer_kmeans = β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ KMeans(n_clusters=5).fit(customer_data.drop('age', axis=1)) β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This code uses the `KMeans` algorithm from the `scikit-learn` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ library to cluster the customers based on their β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ characteristics (excluding the `age` column). We can use this β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ to identify groups of similar customers. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ And that's it! These are just a few examples of how you can β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ use Colab to analyze Python data. Of course, there are many β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ more techniques and libraries you can use, depending on the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ nature of your dataset. I hope this helps you get started β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ with analyzing your own data using Colab! β”‚ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ BEGINNING OF CONVERSATION: USER: write an assignment on β”‚ Title: Designing a University Management System β”‚ 0.229492 β”‚ Assignment Title: University Management System β”‚ 0.220703 β”‚
β”‚ University management system(also write sql commands, β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ relation schema and max 5 table) ASSISTANT: β”‚ Objective: β”‚ β”‚ Introduction: β”‚ β”‚
β”‚ β”‚ The objective of this assignment is to design a university β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ management system by creating a relational schema, SQL β”‚ β”‚ A University Management System is a software application for β”‚ β”‚
β”‚ β”‚ commands, and implementing it using no more than five tables. β”‚ β”‚ managing academic and administrative tasks. This system β”‚ β”‚
β”‚ β”‚ The system will help manage student and staff records, β”‚ β”‚ provides a centralized solution to manage records and tasks β”‚ β”‚
β”‚ β”‚ courses, and other essential aspects of university management. β”‚ β”‚ related to students, teachers, courses, departments, and β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ other aspects of the university. The goal of this assignment β”‚ β”‚
β”‚ β”‚ Specifications: β”‚ β”‚ is to create a University Management System using a β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ relational database. β”‚ β”‚
β”‚ β”‚ 1. The system should be capable of storing and managing β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ student records, including personal details, contact β”‚ β”‚ Architecture of University Management System: β”‚ β”‚
β”‚ β”‚ information, and academic records. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 2. The system should be able to store and manage staff β”‚ β”‚ The University Management System will have five main tables β”‚ β”‚
β”‚ β”‚ records, including personal details, contact information, and β”‚ β”‚ in the relational schema: Students, Teachers, Courses, β”‚ β”‚
β”‚ β”‚ employment history. β”‚ β”‚ Departments, and Attendance. These tables will be joined β”‚ β”‚
β”‚ β”‚ 3. The system should manage courses, including course details, β”‚ β”‚ together to provide functionalities such as course β”‚ β”‚
β”‚ β”‚ instructors, and enrolled students. β”‚ β”‚ registration, course management, student profiling, student β”‚ β”‚
β”‚ β”‚ 4. The system should support adding, editing, and removing β”‚ β”‚ performance evaluation, and others. β”‚ β”‚
β”‚ β”‚ records. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 5. The system should facilitate querying and reporting based β”‚ β”‚ 1. Students Table: β”‚ β”‚
β”‚ β”‚ on the stored data. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ Schema: β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ The proposed relational schema for the university management β”‚ β”‚ | student_id | INT | Unique identifier for the student | β”‚ β”‚
β”‚ β”‚ system is as follows: β”‚ β”‚ | first_name | VARCHAR | First name of the student | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | last_name | VARCHAR | Last name of the student | β”‚ β”‚
β”‚ β”‚ Table 1: Students (S) β”‚ β”‚ | email | VARCHAR | Email address of the student | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | course_id | INT | Course that student is enrolled in | β”‚ β”‚
β”‚ β”‚ * S\_ID (Primary Key): Unique identifier for each student β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ * FirstName: Student's first name β”‚ β”‚ SQL Command to create the Students table: β”‚ β”‚
β”‚ β”‚ * LastName: Student's last name β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ * MiddleName: Student's middle name β”‚ β”‚ CREATE TABLE students ( β”‚ β”‚
β”‚ β”‚ * Gender: Student's gender β”‚ β”‚ student_id INT PRIMARY KEY, β”‚ β”‚
β”‚ β”‚ * DateOfBirth: Student's date of birth β”‚ β”‚ first_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * Address: Student's address β”‚ β”‚ last_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * ContactNumber: Student's contact number β”‚ β”‚ email VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * Email: Student's email address β”‚ β”‚ course_id INT β”‚ β”‚
β”‚ β”‚ * RegistrationNumber: Student's registration number β”‚ β”‚ ); β”‚ β”‚
β”‚ β”‚ * EnrollmentStatus: Student's enrollment status β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ 1. Teachers Table: β”‚ β”‚
β”‚ β”‚ Table 2: Staff ( Employees ) β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ * Employee\_ID (Primary Key): Unique identifier for each staff β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ member β”‚ β”‚ | teacher_id | INT | Unique identifier for the teacher | β”‚ β”‚
β”‚ β”‚ * FirstName: Staff member's first name β”‚ β”‚ | first_name | VARCHAR | First name of the teacher | β”‚ β”‚
β”‚ β”‚ * LastName: Staff member's last name β”‚ β”‚ | last_name | VARCHAR | Last name of the teacher | β”‚ β”‚
β”‚ β”‚ * MiddleName: Staff member's middle name β”‚ β”‚ | email | VARCHAR | Email address of the teacher | β”‚ β”‚
β”‚ β”‚ * Gender: Staff member's gender β”‚ β”‚ | department_id | INT | Department that teacher is associated β”‚ β”‚
β”‚ β”‚ * DateOfBirth: Staff member's date of birth β”‚ β”‚ with | β”‚ β”‚
β”‚ β”‚ * Address: Staff member's address β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ * ContactNumber: Staff member's contact number β”‚ β”‚ SQL Command to create the Teachers table: β”‚ β”‚
β”‚ β”‚ * Email: Staff member's email address β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ * Position: Staff member's job position β”‚ β”‚ CREATE TABLE teachers ( β”‚ β”‚
β”‚ β”‚ * Department: Staff member's department β”‚ β”‚ teacher_id INT PRIMARY KEY, β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ first_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ Table 3: Courses (C) β”‚ β”‚ last_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ email VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * Course\_ID (Primary Key): Unique identifier for each course β”‚ β”‚ department_id INT β”‚ β”‚
β”‚ β”‚ * CourseName: Course name β”‚ β”‚ ); β”‚ β”‚
β”‚ β”‚ * CourseCode: Course code β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ * Description: Course description β”‚ β”‚ 1. Courses Table: β”‚ β”‚
β”‚ β”‚ * Instructor\_ID: ID of the instructor for the course (Foreign β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ key referencing Staff) β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ * Department: Department the course belongs to (Foreign key β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ referencing Departments) β”‚ β”‚ | course_id | INT | Unique identifier for the course | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | course_name | VARCHAR | Name of the course | β”‚ β”‚
β”‚ β”‚ Table 4: Students\_Courses (SC) β”‚ β”‚ | department_id | INT | Department that course belongs to | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | instructor_id | INT | ID of the teacher who is teaching the β”‚ β”‚
β”‚ β”‚ * SC\_ID (Primary Key): Unique identifier for the β”‚ β”‚ course | β”‚ β”‚
β”‚ β”‚ student-course relationship β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ * S\_ID (Foreign key): ID of the student (Referencing β”‚ β”‚ SQL Command to create the Courses table: β”‚ β”‚
β”‚ β”‚ Students) β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ * Course\_ID (Foreign key): ID of the course (Referencing β”‚ β”‚ CREATE TABLE courses ( β”‚ β”‚
β”‚ β”‚ Courses) β”‚ β”‚ course_id INT PRIMARY KEY, β”‚ β”‚
β”‚ β”‚ * EnrollmentDate: Date when the student enrolled in the course β”‚ β”‚ course_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * Grade: Final grade earned by the student in the course β”‚ β”‚ department_id INT, β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ instructor_id INT β”‚ β”‚
β”‚ β”‚ Table 5: Departments (D) β”‚ β”‚ ); β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ * Department\_ID (Primary Key): Unique identifier for each β”‚ β”‚ 1. Departments Table: β”‚ β”‚
β”‚ β”‚ department β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ * DepartmentName: Department name β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ * DepartmentChair: ID of the department chair (Foreign key β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ referencing Staff) β”‚ β”‚ | department_id | INT | Unique identifier for the department β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | β”‚ β”‚
β”‚ β”‚ SQL Commands: β”‚ β”‚ | department_name | VARCHAR | Name of the department | β”‚ β”‚
β”‚ β”‚ The following SQL commands will help in implementing and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ managing the university management system: β”‚ β”‚ SQL Command to create the Departments table: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ 1. INSERT INTO Students (Student\_ID, FirstName, LastName, β”‚ β”‚ CREATE TABLE departments ( β”‚ β”‚
β”‚ β”‚ MiddleName, Gender, DateOfBirth, Address, ContactNumber, β”‚ β”‚ department_id INT PRIMARY KEY, β”‚ β”‚
β”‚ β”‚ Email, RegistrationNumber, EnrollmentStatus) β”‚ β”‚ department_name VARCHAR(50) β”‚ β”‚
β”‚ β”‚ 2. INSERT INTO Staff (Employee\_ID, FirstName, LastName, β”‚ β”‚ ); β”‚ β”‚
β”‚ β”‚ MiddleName, Gender, DateOfBirth, Address, ContactNumber, β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ Email, Position, Department) β”‚ β”‚ 1. Attendance Table: β”‚ β”‚
β”‚ β”‚ 3. INSERT INTO Courses (Course\_ID, CourseName, CourseCode, β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ Description, Instructor\_ID, Department) β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ 4. INSERT INTO Students\_Courses (SC\_ID, S\_ID, Course\_ID, β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ EnrollmentDate, Grade) β”‚ β”‚ | attendance_id | INT | Unique identifier for attendance β”‚ β”‚
β”‚ β”‚ 5. INSERT INTO Departments (Department\_ID, DepartmentName, β”‚ β”‚ record | β”‚ β”‚
β”‚ β”‚ DepartmentChair) β”‚ β”‚ | student_id | INT | ID of the student attending the class | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | course_id | INT | ID of the course attended | β”‚ β”‚
β”‚ β”‚ 1. UPDATE Students SET FirstName = 'NewFirstName', LastName = β”‚ β”‚ | date_time | DATE | Date and time of the class | β”‚ β”‚
β”‚ β”‚ 'NewLastName', Address = 'NewAddress' WHERE Student\_ID = ' β”‚ β”‚ | status | VARCHAR | Status of the student's attendance β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ (Attended/Absent) | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ SQL Command to create the Attendance table: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ CREATE TABLE attendance ( β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ attendance_id INT PRIMARY KEY, β”‚ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ BEGINNING OF CONVERSATION: USER: create a cheat sheet for β”‚ Hello! As a respectful and helpful AI assistant, I'm here to β”‚ 0.212891 β”‚ A cheat sheet for data management in clinical trials can β”‚ 0.234375 β”‚
β”‚ data management in clinical trials, including a short β”‚ help you with your question on data management in clinical β”‚ β”‚ include a short description of the necessary documents, such β”‚ β”‚
β”‚ description of the necessary documents, to do's and main β”‚ trials. Here's a cheat sheet that summarizes the necessary β”‚ β”‚ as case report forms (CRFs), informed consent forms (ICFs), β”‚ β”‚
β”‚ activities ASSISTANT: β”‚ documents, to-do's, and main activities for successful data β”‚ β”‚ standard operating procedures (SOPs), and data safety β”‚ β”‚
β”‚ β”‚ management in clinical trials: β”‚ β”‚ monitoring plans (DSMPs). The to do's can include compiling β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ these documents, collecting and managing data, maintaining a β”‚ β”‚
β”‚ β”‚ Necessary Documents: β”‚ β”‚ trial master file (TMF), and conducting statistical analyses. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ The main activities include conducting a risk assessment, β”‚ β”‚
β”‚ β”‚ 1. Study Protocol: This document outlines the overall plan for β”‚ β”‚ monitoring data quality, ensuring adherence to protocols, and β”‚ β”‚
β”‚ β”‚ the clinical trial, including the objectives, β”‚ β”‚ managing study events. β”‚ β”‚
β”‚ β”‚ inclusion/exclusion criteria, and the methods for data β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ collection and analysis. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 2. Data Management Plan (DMP): This document details the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ strategies and procedures for collecting, storing, and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ analyzing the data generated during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 3. Case Report Forms (CRFs): These forms are used to collect β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ data from participants during the clinical trial, and they β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ should be designed to capture the relevant information needed β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ for the study. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 4. Data Query Management Plan: This plan outlines the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ procedures for addressing data discrepancies and resolving β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ queries that arise during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 5. Data Monitoring Plan: This plan details the procedures for β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ monitoring the data collected during the clinical trial, β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ including the methods for detecting and addressing anydata β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ issues. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ To-Do's: β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 1. Develop a comprehensive Data Management Plan (DMP) that β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ outlines the strategies and procedures for collecting, β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ storing, and analyzing the data generated during the clinical β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 2. Train the study team on the data management procedures β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ outlined in the DMP. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 3. Develop and implement a robust data quality control process β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ to ensure the accuracy, completeness, and consistency of the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ data collected during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 4. Regularly review and update the DMP as needed to ensure β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ that it remains relevant and effective throughout the clinical β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 5. Monitor the data collected during the clinical trial in β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ accordance with the Data Monitoring Plan to ensure that the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ data is accurate, complete, and consistent. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ Main Activities: β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 1. Data Collection: This involves the use of CRFs and other β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ data collection tools to capture the relevant data from β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ participants during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 2. Data Cleaning and Validation: This involves reviewing and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ correcting any errors or inconsistencies in the data to ensure β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ that it is accurate and complete. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 3. Data Integration: This involves combining data from β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ multiple sources (e.g., CRFs, laboratory results, medical β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ imaging) to create a comprehensive view of the data. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 4. Data Analysis: This involves using statistical methods and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ other techniques to extract insights and meaning from the data β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ collected during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 5. Data Reporting: This involves presenting the findings of β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ the clinical trial in a clear and concise manner, using β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ graphs, tables, and other visual aids to help stakeholders β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ understand the results. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ I hope this cheat sheet is helpful in providing you with a β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ comprehensive overview of the necessary documents, to-do's, β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ and main activities for successful data management in clinical β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ trials. If you have any further questions or need more β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ information, please don't hesitate to ask! β”‚ β”‚ β”‚ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
[2024-09-10 21:16:31,442] [INFO] [logging.py:96:log_dist] [Rank 0] step=10, skipped=0, lr=[1.6666666666666667e-05, 1.6666666666666667e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:16:31,443] [INFO] [timer.py:258:stop] epoch=0/micro_step=40/global_step=10, RunningAvgSamplesPerSec=11.352064835791357, CurrSamplesPerSec=12.850610086386917, MemAllocated=2.43GB, MaxMemAllocated=8.25GB
[2024-09-10 21:18:28,331] [INFO] [logging.py:96:log_dist] [Rank 0] step=20, skipped=0, lr=[1.998121781934438e-05, 1.998121781934438e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:18:28,332] [INFO] [timer.py:258:stop] epoch=0/micro_step=80/global_step=20, RunningAvgSamplesPerSec=11.363551332554591, CurrSamplesPerSec=10.94879345671668, MemAllocated=2.43GB, MaxMemAllocated=8.25GB
[2024-09-10 21:20:27,570] [INFO] [logging.py:96:log_dist] [Rank 0] step=30, skipped=0, lr=[1.9905036114631247e-05, 1.9905036114631247e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:20:27,570] [INFO] [timer.py:258:stop] epoch=0/micro_step=120/global_step=30, RunningAvgSamplesPerSec=11.298163748093565, CurrSamplesPerSec=11.487612894272052, MemAllocated=2.43GB, MaxMemAllocated=8.25GB
[2024-09-10 21:22:22,658] [INFO] [logging.py:96:log_dist] [Rank 0] step=40, skipped=0, lr=[1.9770727719432994e-05, 1.9770727719432994e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:22:22,658] [INFO] [timer.py:258:stop] epoch=0/micro_step=160/global_step=40, RunningAvgSamplesPerSec=11.353218793245079, CurrSamplesPerSec=10.9797341655996, MemAllocated=2.43GB, MaxMemAllocated=8.25GB
[2024-09-10 21:24:21,862] [INFO] [logging.py:96:log_dist] [Rank 0] step=50, skipped=0, lr=[1.9579080808818035e-05, 1.9579080808818035e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:24:21,862] [INFO] [timer.py:258:stop] epoch=0/micro_step=200/global_step=50, RunningAvgSamplesPerSec=11.309583578778108, CurrSamplesPerSec=11.005110509882158, MemAllocated=2.43GB, MaxMemAllocated=8.25GB
[2024-09-10 21:26:23,209] [INFO] [logging.py:96:log_dist] [Rank 0] step=60, skipped=0, lr=[1.9331220043062894e-05, 1.9331220043062894e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:26:23,210] [INFO] [timer.py:258:stop] epoch=0/micro_step=240/global_step=60, RunningAvgSamplesPerSec=11.239385489180092, CurrSamplesPerSec=12.941125799620023, MemAllocated=2.43GB, MaxMemAllocated=8.26GB
[2024-09-10 21:27:36,753] [INFO] [logging.py:96:log_dist] [Rank 0] step=70, skipped=0, lr=[1.9028599967698533e-05, 1.9028599967698533e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:27:36,753] [INFO] [timer.py:258:stop] epoch=0/micro_step=280/global_step=70, RunningAvgSamplesPerSec=11.919907292071862, CurrSamplesPerSec=37.40828234561593, MemAllocated=2.43GB, MaxMemAllocated=8.26GB
[2024-09-10 21:28:16,039] [INFO] [logging.py:96:log_dist] [Rank 0] step=80, skipped=0, lr=[1.8672996477658767e-05, 1.8672996477658767e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:28:16,039] [INFO] [timer.py:258:stop] epoch=0/micro_step=320/global_step=80, RunningAvgSamplesPerSec=13.023186384694899, CurrSamplesPerSec=33.891358706157426, MemAllocated=2.43GB, MaxMemAllocated=8.26GB
[2024-09-10 21:28:54,903] [INFO] [logging.py:96:log_dist] [Rank 0] step=90, skipped=0, lr=[1.826649639562266e-05, 1.826649639562266e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:28:54,904] [INFO] [timer.py:258:stop] epoch=0/micro_step=360/global_step=90, RunningAvgSamplesPerSec=14.029985026793161, CurrSamplesPerSec=34.3639610115291, MemAllocated=2.43GB, MaxMemAllocated=8.26GB
[2024-09-10 21:29:33,402] [INFO] [logging.py:96:log_dist] [Rank 0] step=100, skipped=0, lr=[1.7811485225709255e-05, 1.7811485225709255e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:29:33,403] [INFO] [timer.py:258:stop] epoch=0/micro_step=400/global_step=100, RunningAvgSamplesPerSec=14.95891743722857, CurrSamplesPerSec=35.51995537038689, MemAllocated=2.43GB, MaxMemAllocated=8.26GB
[2024-09-10 21:30:12,602] [INFO] [logging.py:96:log_dist] [Rank 0] step=110, skipped=0, lr=[1.731063315439084e-05, 1.731063315439084e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:30:12,603] [INFO] [timer.py:258:stop] epoch=0/micro_step=440/global_step=110, RunningAvgSamplesPerSec=15.790714272731938, CurrSamplesPerSec=33.65822133275722, MemAllocated=2.43GB, MaxMemAllocated=8.27GB
[2024-09-10 21:30:50,861] [INFO] [logging.py:96:log_dist] [Rank 0] step=120, skipped=0, lr=[1.6766879380776983e-05, 1.6766879380776983e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:30:50,861] [INFO] [timer.py:258:stop] epoch=0/micro_step=480/global_step=120, RunningAvgSamplesPerSec=16.581424302731428, CurrSamplesPerSec=35.42318196453927, MemAllocated=2.43GB, MaxMemAllocated=8.27GB
[2024-09-10 21:31:30,047] [INFO] [logging.py:96:log_dist] [Rank 0] step=130, skipped=0, lr=[1.6183414868225434e-05, 1.6183414868225434e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:31:30,047] [INFO] [timer.py:258:stop] epoch=0/micro_step=520/global_step=130, RunningAvgSamplesPerSec=17.29520092558459, CurrSamplesPerSec=39.98405555917592, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:32:08,975] [INFO] [logging.py:96:log_dist] [Rank 0] step=140, skipped=0, lr=[1.55636636185003e-05, 1.55636636185003e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:32:08,976] [INFO] [timer.py:258:stop] epoch=0/micro_step=560/global_step=140, RunningAvgSamplesPerSec=17.960545464179184, CurrSamplesPerSec=36.18071795491109, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:32:47,194] [INFO] [logging.py:96:log_dist] [Rank 0] step=150, skipped=0, lr=[1.4911262578368233e-05, 1.4911262578368233e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:32:47,195] [INFO] [timer.py:258:stop] epoch=0/micro_step=600/global_step=150, RunningAvgSamplesPerSec=18.588957116713487, CurrSamplesPerSec=35.50834292851299, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:33:26,895] [INFO] [logging.py:96:log_dist] [Rank 0] step=160, skipped=0, lr=[1.4230040296548588e-05, 1.4230040296548588e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:33:26,896] [INFO] [timer.py:258:stop] epoch=0/micro_step=640/global_step=160, RunningAvgSamplesPerSec=19.152311385651867, CurrSamplesPerSec=33.165219493804244, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:34:04,963] [INFO] [logging.py:96:log_dist] [Rank 0] step=170, skipped=0, lr=[1.352399445626722e-05, 1.352399445626722e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:34:04,964] [INFO] [timer.py:258:stop] epoch=0/micro_step=680/global_step=170, RunningAvgSamplesPerSec=19.705901192348477, CurrSamplesPerSec=38.5529274775763, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:34:42,710] [INFO] [logging.py:96:log_dist] [Rank 0] step=180, skipped=0, lr=[1.2797268415261681e-05, 1.2797268415261681e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:34:42,710] [INFO] [timer.py:258:stop] epoch=0/micro_step=720/global_step=180, RunningAvgSamplesPerSec=20.231478027340223, CurrSamplesPerSec=37.03658383470068, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:35:22,082] [INFO] [logging.py:96:log_dist] [Rank 0] step=190, skipped=0, lr=[1.2054126890910499e-05, 1.2054126890910499e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:35:22,082] [INFO] [timer.py:258:stop] epoch=0/micro_step=760/global_step=190, RunningAvgSamplesPerSec=20.6988053391199, CurrSamplesPerSec=34.546312777603255, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:36:00,721] [INFO] [logging.py:96:log_dist] [Rank 0] step=200, skipped=0, lr=[1.1298930933175805e-05, 1.1298930933175805e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:36:00,721] [INFO] [timer.py:258:stop] epoch=0/micro_step=800/global_step=200, RunningAvgSamplesPerSec=21.146676476095102, CurrSamplesPerSec=34.54886048866023, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:36:39,570] [INFO] [logging.py:96:log_dist] [Rank 0] step=210, skipped=0, lr=[1.0536112332228057e-05, 1.0536112332228057e-05], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:36:39,570] [INFO] [timer.py:258:stop] epoch=0/micro_step=840/global_step=210, RunningAvgSamplesPerSec=21.566856479167555, CurrSamplesPerSec=34.07296502962237, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
***** Evaluating at epoch 1/2 *****
Evaluation: accuracy = 0.792333, reward_mean = 0.444733, reward_std = 2.274559
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┓
┃ prompt ┃ higher-reward response ┃ reward ┃ lower-reward response ┃ reward ┃
┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━┩
β”‚ BEGINNING OF CONVERSATION: USER: I would like to see a good β”‚ Sure! Google Colab is a great platform for running Python β”‚ 1.906250 β”‚ Of course! I'm happy to help you with analyzing Python data β”‚ 3.281250 β”‚
β”‚ example of analyzing Python data using Colab. Show me a code β”‚ code and analyzing data using Python libraries, like pandas, β”‚ β”‚ using Colab. β”‚ β”‚
β”‚ example. ASSISTANT: β”‚ matplotlib and seaborn. Here's a simple example using a β”‚ β”‚ First, let me clarify that Colab is a free-hosted Jupyter β”‚ β”‚
β”‚ β”‚ dataset about cars and analyzing the relationship between β”‚ β”‚ notebook browser that allows you to write and run Python code β”‚ β”‚
β”‚ β”‚ horsepower and miles per gallon (mpg). β”‚ β”‚ in your web browser. It's a great tool for data analysis and β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ visualization, and we can use it to analyze Python data using β”‚ β”‚
β”‚ β”‚ ```python β”‚ β”‚ various libraries and techniques. β”‚ β”‚
β”‚ β”‚ # Import necessary libraries β”‚ β”‚ Now, let's say we have a dataset of customer information for β”‚ β”‚
β”‚ β”‚ import pandas as pd β”‚ β”‚ an e-commerce website, and we want to analyze it using Colab. β”‚ β”‚
β”‚ β”‚ import matplotlib.pyplot as plt β”‚ β”‚ Here's an example of how we can do this: β”‚ β”‚
β”‚ β”‚ import seaborn as sns β”‚ β”‚ 1. First, let's import the necessary libraries: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ # Load a sample dataset about cars (available on seaborn β”‚ β”‚ !pip install pandas β”‚ β”‚
β”‚ β”‚ library) β”‚ β”‚ import pandas as pd β”‚ β”‚
β”‚ β”‚ df = sns.load_dataset('mpg') β”‚ β”‚ import numpy as np β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ import matplotlib.pyplot as plt β”‚ β”‚
β”‚ β”‚ # Print the first few rows of the dataset β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ print(df.head()) β”‚ β”‚ In this code, we're installing the `pandas` library for data β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ manipulation and analysis, and `numpy` for numerical β”‚ β”‚
β”‚ β”‚ # Visualize the relationship between 'horsepower' and'mpg' β”‚ β”‚ computations. We're also importing the `matplotlib` library β”‚ β”‚
β”‚ β”‚ plt.figure(figsize=(10, 5)) β”‚ β”‚ for data visualization. β”‚ β”‚
β”‚ β”‚ sns.scatterplot(x='horsepower', y='mpg', data=df) β”‚ β”‚ 2. Next, let's load the dataset: β”‚ β”‚
β”‚ β”‚ plt.title('Relationship between Horsepower and MPG') β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ plt.xlabel('Horsepower') β”‚ β”‚ customer_data = pd.read_csv('customer.csv') β”‚ β”‚
β”‚ β”‚ plt.ylabel('Miles per Gallon') β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ # Replace 'customer.csv' with the name of your dataset file β”‚ β”‚
β”‚ β”‚ # Display the plot β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ plt.show() β”‚ β”‚ This code reads the customer dataset from a CSV file named β”‚ β”‚
β”‚ β”‚ ``` β”‚ β”‚ `customer.csv`. Make sure to replace this with the actual β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ name of your dataset file. β”‚ β”‚
β”‚ β”‚ This code will create a scatter plot showing the relationship β”‚ β”‚ 3. Now, let's examine the dataset: β”‚ β”‚
β”‚ β”‚ between horsepower and miles per gallon (mpg) of various β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ cars. The seaborn library comes with several built-in β”‚ β”‚ print(customer_data.head()) β”‚ β”‚
β”‚ β”‚ datasets, one of which is used in this example. You can also β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ upload your data files into your Colab notebook and load them β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ into a pandas DataFrame for analysis and visualization. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This code displays the first few rows of the dataset using β”‚ β”‚
β”‚ β”‚ To run the code shown above in Google Colab: β”‚ β”‚ the `head()` method of the `pd.DataFrame` object. This gives β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ us a quick rundown of what the dataset looks like. β”‚ β”‚
β”‚ β”‚ 1. Head over to https://colab.research.google.com β”‚ β”‚ 4. Let's analyze the dataset using some basic statistical β”‚ β”‚
β”‚ β”‚ 2. Click `File` > `New notebook` β”‚ β”‚ metrics: β”‚ β”‚
β”‚ β”‚ 3. Copy and paste the code into a code cell β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 4. Press `Shift` + `Enter` to execute the cell and see the β”‚ β”‚ print(customer_data.mean()) β”‚ β”‚
β”‚ β”‚ output below the cell β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This code calculates the mean of various columns in the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ dataset using the `mean()` method of the `pd.DataFrame` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ object. This gives us an idea of the average value of each β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ column. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ 5. Let's visualize the distribution of values in one of the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ columns: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ print(customer_data['age'].hist()) β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This code creates a histogram of the values in the `age` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ column using the `hist()` method of the `pd.Series` object. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This gives us a visual representation of the distribution of β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ages in the dataset. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ 6. Finally, let's analyze the data using a machine learning β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ algorithm: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ from sklearn.cluster import KMeans β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ customer_kmeans = β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ KMeans(n_clusters=5).fit(customer_data.drop('age', axis=1)) β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This code uses the `KMeans` algorithm from the `scikit-learn` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ library to cluster the customers based on their β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ characteristics (excluding the `age` column). We can use this β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ to identify groups of similar customers. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ And that's it! These are just a few examples of how you can β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ use Colab to analyze Python data. Of course, there are many β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ more techniques and libraries you can use, depending on the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ nature of your dataset. I hope this helps you get started β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ with analyzing your own data using Colab! β”‚ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ BEGINNING OF CONVERSATION: USER: write an assignment on β”‚ Title: Designing a University Management System β”‚ 2.515625 β”‚ Assignment Title: University Management System β”‚ 2.671875 β”‚
β”‚ University management system(also write sql commands, β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ relation schema and max 5 table) ASSISTANT: β”‚ Objective: β”‚ β”‚ Introduction: β”‚ β”‚
β”‚ β”‚ The objective of this assignment is to design a university β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ management system by creating a relational schema, SQL β”‚ β”‚ A University Management System is a software application for β”‚ β”‚
β”‚ β”‚ commands, and implementing it using no more than five tables. β”‚ β”‚ managing academic and administrative tasks. This system β”‚ β”‚
β”‚ β”‚ The system will help manage student and staff records, β”‚ β”‚ provides a centralized solution to manage records and tasks β”‚ β”‚
β”‚ β”‚ courses, and other essential aspects of university β”‚ β”‚ related to students, teachers, courses, departments, and β”‚ β”‚
β”‚ β”‚ management. β”‚ β”‚ other aspects of the university. The goal of this assignment β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ is to create a University Management System using a β”‚ β”‚
β”‚ β”‚ Specifications: β”‚ β”‚ relational database. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 1. The system should be capable of storing and managing β”‚ β”‚ Architecture of University Management System: β”‚ β”‚
β”‚ β”‚ student records, including personal details, contact β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ information, and academic records. β”‚ β”‚ The University Management System will have five main tables β”‚ β”‚
β”‚ β”‚ 2. The system should be able to store and manage staff β”‚ β”‚ in the relational schema: Students, Teachers, Courses, β”‚ β”‚
β”‚ β”‚ records, including personal details, contact information, and β”‚ β”‚ Departments, and Attendance. These tables will be joined β”‚ β”‚
β”‚ β”‚ employment history. β”‚ β”‚ together to provide functionalities such as course β”‚ β”‚
β”‚ β”‚ 3. The system should manage courses, including course β”‚ β”‚ registration, course management, student profiling, student β”‚ β”‚
β”‚ β”‚ details, instructors, and enrolled students. β”‚ β”‚ performance evaluation, and others. β”‚ β”‚
β”‚ β”‚ 4. The system should support adding, editing, and removing β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ records. β”‚ β”‚ 1. Students Table: β”‚ β”‚
β”‚ β”‚ 5. The system should facilitate querying and reporting based β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ on the stored data. β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ Schema: β”‚ β”‚ | student_id | INT | Unique identifier for the student | β”‚ β”‚
β”‚ β”‚ The proposed relational schema for the university management β”‚ β”‚ | first_name | VARCHAR | First name of the student | β”‚ β”‚
β”‚ β”‚ system is as follows: β”‚ β”‚ | last_name | VARCHAR | Last name of the student | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | email | VARCHAR | Email address of the student | β”‚ β”‚
β”‚ β”‚ Table 1: Students (S) β”‚ β”‚ | course_id | INT | Course that student is enrolled in | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ * S\_ID (Primary Key): Unique identifier for each student β”‚ β”‚ SQL Command to create the Students table: β”‚ β”‚
β”‚ β”‚ * FirstName: Student's first name β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ * LastName: Student's last name β”‚ β”‚ CREATE TABLE students ( β”‚ β”‚
β”‚ β”‚ * MiddleName: Student's middle name β”‚ β”‚ student_id INT PRIMARY KEY, β”‚ β”‚
β”‚ β”‚ * Gender: Student's gender β”‚ β”‚ first_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * DateOfBirth: Student's date of birth β”‚ β”‚ last_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * Address: Student's address β”‚ β”‚ email VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * ContactNumber: Student's contact number β”‚ β”‚ course_id INT β”‚ β”‚
β”‚ β”‚ * Email: Student's email address β”‚ β”‚ ); β”‚ β”‚
β”‚ β”‚ * RegistrationNumber: Student's registration number β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ * EnrollmentStatus: Student's enrollment status β”‚ β”‚ 1. Teachers Table: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ Table 2: Staff ( Employees ) β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ * Employee\_ID (Primary Key): Unique identifier for each β”‚ β”‚ | teacher_id | INT | Unique identifier for the teacher | β”‚ β”‚
β”‚ β”‚ staff member β”‚ β”‚ | first_name | VARCHAR | First name of the teacher | β”‚ β”‚
β”‚ β”‚ * FirstName: Staff member's first name β”‚ β”‚ | last_name | VARCHAR | Last name of the teacher | β”‚ β”‚
β”‚ β”‚ * LastName: Staff member's last name β”‚ β”‚ | email | VARCHAR | Email address of the teacher | β”‚ β”‚
β”‚ β”‚ * MiddleName: Staff member's middle name β”‚ β”‚ | department_id | INT | Department that teacher is associated β”‚ β”‚
β”‚ β”‚ * Gender: Staff member's gender β”‚ β”‚ with | β”‚ β”‚
β”‚ β”‚ * DateOfBirth: Staff member's date of birth β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ * Address: Staff member's address β”‚ β”‚ SQL Command to create the Teachers table: β”‚ β”‚
β”‚ β”‚ * ContactNumber: Staff member's contact number β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ * Email: Staff member's email address β”‚ β”‚ CREATE TABLE teachers ( β”‚ β”‚
β”‚ β”‚ * Position: Staff member's job position β”‚ β”‚ teacher_id INT PRIMARY KEY, β”‚ β”‚
β”‚ β”‚ * Department: Staff member's department β”‚ β”‚ first_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ last_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ Table 3: Courses (C) β”‚ β”‚ email VARCHAR(50), β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ department_id INT β”‚ β”‚
β”‚ β”‚ * Course\_ID (Primary Key): Unique identifier for each course β”‚ β”‚ ); β”‚ β”‚
β”‚ β”‚ * CourseName: Course name β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ * CourseCode: Course code β”‚ β”‚ 1. Courses Table: β”‚ β”‚
β”‚ β”‚ * Description: Course description β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ * Instructor\_ID: ID of the instructor for the course β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ (Foreign key referencing Staff) β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ * Department: Department the course belongs to (Foreign key β”‚ β”‚ | course_id | INT | Unique identifier for the course | β”‚ β”‚
β”‚ β”‚ referencing Departments) β”‚ β”‚ | course_name | VARCHAR | Name of the course | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | department_id | INT | Department that course belongs to | β”‚ β”‚
β”‚ β”‚ Table 4: Students\_Courses (SC) β”‚ β”‚ | instructor_id | INT | ID of the teacher who is teaching the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ course | β”‚ β”‚
β”‚ β”‚ * SC\_ID (Primary Key): Unique identifier for the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ student-course relationship β”‚ β”‚ SQL Command to create the Courses table: β”‚ β”‚
β”‚ β”‚ * S\_ID (Foreign key): ID of the student (Referencing β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ Students) β”‚ β”‚ CREATE TABLE courses ( β”‚ β”‚
β”‚ β”‚ * Course\_ID (Foreign key): ID of the course (Referencing β”‚ β”‚ course_id INT PRIMARY KEY, β”‚ β”‚
β”‚ β”‚ Courses) β”‚ β”‚ course_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * EnrollmentDate: Date when the student enrolled in the β”‚ β”‚ department_id INT, β”‚ β”‚
β”‚ β”‚ course β”‚ β”‚ instructor_id INT β”‚ β”‚
β”‚ β”‚ * Grade: Final grade earned by the student in the course β”‚ β”‚ ); β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ Table 5: Departments (D) β”‚ β”‚ 1. Departments Table: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ * Department\_ID (Primary Key): Unique identifier for each β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ department β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ * DepartmentName: Department name β”‚ β”‚ | department_id | INT | Unique identifier for the department β”‚ β”‚
β”‚ β”‚ * DepartmentChair: ID of the department chair (Foreign key β”‚ β”‚ | β”‚ β”‚
β”‚ β”‚ referencing Staff) β”‚ β”‚ | department_name | VARCHAR | Name of the department | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ SQL Commands: β”‚ β”‚ SQL Command to create the Departments table: β”‚ β”‚
β”‚ β”‚ The following SQL commands will help in implementing and β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ managing the university management system: β”‚ β”‚ CREATE TABLE departments ( β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ department_id INT PRIMARY KEY, β”‚ β”‚
β”‚ β”‚ 1. INSERT INTO Students (Student\_ID, FirstName, LastName, β”‚ β”‚ department_name VARCHAR(50) β”‚ β”‚
β”‚ β”‚ MiddleName, Gender, DateOfBirth, Address, ContactNumber, β”‚ β”‚ ); β”‚ β”‚
β”‚ β”‚ Email, RegistrationNumber, EnrollmentStatus) β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ 2. INSERT INTO Staff (Employee\_ID, FirstName, LastName, β”‚ β”‚ 1. Attendance Table: β”‚ β”‚
β”‚ β”‚ MiddleName, Gender, DateOfBirth, Address, ContactNumber, β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ Email, Position, Department) β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ 3. INSERT INTO Courses (Course\_ID, CourseName, CourseCode, β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ Description, Instructor\_ID, Department) β”‚ β”‚ | attendance_id | INT | Unique identifier for attendance β”‚ β”‚
β”‚ β”‚ 4. INSERT INTO Students\_Courses (SC\_ID, S\_ID, Course\_ID, β”‚ β”‚ record | β”‚ β”‚
β”‚ β”‚ EnrollmentDate, Grade) β”‚ β”‚ | student_id | INT | ID of the student attending the class | β”‚ β”‚
β”‚ β”‚ 5. INSERT INTO Departments (Department\_ID, DepartmentName, β”‚ β”‚ | course_id | INT | ID of the course attended | β”‚ β”‚
β”‚ β”‚ DepartmentChair) β”‚ β”‚ | date_time | DATE | Date and time of the class | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | status | VARCHAR | Status of the student's attendance β”‚ β”‚
β”‚ β”‚ 1. UPDATE Students SET FirstName = 'NewFirstName', LastName = β”‚ β”‚ (Attended/Absent) | β”‚ β”‚
β”‚ β”‚ 'NewLastName', Address = 'NewAddress' WHERE Student\_ID = ' β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ SQL Command to create the Attendance table: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ CREATE TABLE attendance ( β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ attendance_id INT PRIMARY KEY, β”‚ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ BEGINNING OF CONVERSATION: USER: create a cheat sheet for β”‚ Hello! As a respectful and helpful AI assistant, I'm here to β”‚ 2.906250 β”‚ A cheat sheet for data management in clinical trials can β”‚ -1.640625 β”‚
β”‚ data management in clinical trials, including a short β”‚ help you with your question on data management in clinical β”‚ β”‚ include a short description of the necessary documents, such β”‚ β”‚
β”‚ description of the necessary documents, to do's and main β”‚ trials. Here's a cheat sheet that summarizes the necessary β”‚ β”‚ as case report forms (CRFs), informed consent forms (ICFs), β”‚ β”‚
β”‚ activities ASSISTANT: β”‚ documents, to-do's, and main activities for successful data β”‚ β”‚ standard operating procedures (SOPs), and data safety β”‚ β”‚
β”‚ β”‚ management in clinical trials: β”‚ β”‚ monitoring plans (DSMPs). The to do's can include compiling β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ these documents, collecting and managing data, maintaining a β”‚ β”‚
β”‚ β”‚ Necessary Documents: β”‚ β”‚ trial master file (TMF), and conducting statistical analyses. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ The main activities include conducting a risk assessment, β”‚ β”‚
β”‚ β”‚ 1. Study Protocol: This document outlines the overall plan β”‚ β”‚ monitoring data quality, ensuring adherence to protocols, and β”‚ β”‚
β”‚ β”‚ for the clinical trial, including the objectives, β”‚ β”‚ managing study events. β”‚ β”‚
β”‚ β”‚ inclusion/exclusion criteria, and the methods for data β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ collection and analysis. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 2. Data Management Plan (DMP): This document details the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ strategies and procedures for collecting, storing, and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ analyzing the data generated during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 3. Case Report Forms (CRFs): These forms are used to collect β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ data from participants during the clinical trial, and they β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ should be designed to capture the relevant information needed β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ for the study. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 4. Data Query Management Plan: This plan outlines the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ procedures for addressing data discrepancies and resolving β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ queries that arise during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 5. Data Monitoring Plan: This plan details the procedures for β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ monitoring the data collected during the clinical trial, β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ including the methods for detecting and addressing anydata β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ issues. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ To-Do's: β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 1. Develop a comprehensive Data Management Plan (DMP) that β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ outlines the strategies and procedures for collecting, β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ storing, and analyzing the data generated during the clinical β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 2. Train the study team on the data management procedures β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ outlined in the DMP. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 3. Develop and implement a robust data quality control β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ process to ensure the accuracy, completeness, and consistency β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ of the data collected during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 4. Regularly review and update the DMP as needed to ensure β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ that it remains relevant and effective throughout the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 5. Monitor the data collected during the clinical trial in β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ accordance with the Data Monitoring Plan to ensure that the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ data is accurate, complete, and consistent. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ Main Activities: β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 1. Data Collection: This involves the use of CRFs and other β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ data collection tools to capture the relevant data from β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ participants during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 2. Data Cleaning and Validation: This involves reviewing and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ correcting any errors or inconsistencies in the data to β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ ensure that it is accurate and complete. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 3. Data Integration: This involves combining data from β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ multiple sources (e.g., CRFs, laboratory results, medical β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ imaging) to create a comprehensive view of the data. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 4. Data Analysis: This involves using statistical methods and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ other techniques to extract insights and meaning from the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ data collected during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 5. Data Reporting: This involves presenting the findings of β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ the clinical trial in a clear and concise manner, using β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ graphs, tables, and other visual aids to help stakeholders β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ understand the results. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ I hope this cheat sheet is helpful in providing you with a β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ comprehensive overview of the necessary documents, to-do's, β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ and main activities for successful data management in β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ clinical trials. If you have any further questions or need β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ more information, please don't hesitate to ask! β”‚ β”‚ β”‚ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
[2024-09-10 21:37:51,869] [INFO] [logging.py:96:log_dist] [Rank 0] step=220, skipped=0, lr=[9.770147610939098e-06, 9.770147610939098e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:37:51,869] [INFO] [timer.py:258:stop] epoch=1/micro_step=36/global_step=220, RunningAvgSamplesPerSec=21.966314339864027, CurrSamplesPerSec=33.760786366468444, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:38:31,329] [INFO] [logging.py:96:log_dist] [Rank 0] step=230, skipped=0, lr=[9.005531754865929e-06, 9.005531754865929e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:38:31,330] [INFO] [timer.py:258:stop] epoch=1/micro_step=76/global_step=230, RunningAvgSamplesPerSec=22.32980174701388, CurrSamplesPerSec=35.389844443022064, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:39:09,598] [INFO] [logging.py:96:log_dist] [Rank 0] step=240, skipped=0, lr=[8.246751833888122e-06, 8.246751833888122e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:39:09,599] [INFO] [timer.py:258:stop] epoch=1/micro_step=116/global_step=240, RunningAvgSamplesPerSec=22.691040550387914, CurrSamplesPerSec=35.76697721022449, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:39:48,325] [INFO] [logging.py:96:log_dist] [Rank 0] step=250, skipped=0, lr=[7.4982606702975505e-06, 7.4982606702975505e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:39:48,326] [INFO] [timer.py:258:stop] epoch=1/micro_step=156/global_step=250, RunningAvgSamplesPerSec=23.020642838591982, CurrSamplesPerSec=34.82238692926768, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:40:27,165] [INFO] [logging.py:96:log_dist] [Rank 0] step=260, skipped=0, lr=[6.764450707866577e-06, 6.764450707866577e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:40:27,166] [INFO] [timer.py:258:stop] epoch=1/micro_step=196/global_step=260, RunningAvgSamplesPerSec=23.33485982834451, CurrSamplesPerSec=36.00791452442397, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:41:06,727] [INFO] [logging.py:96:log_dist] [Rank 0] step=270, skipped=0, lr=[6.049628235241459e-06, 6.049628235241459e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:41:06,727] [INFO] [timer.py:258:stop] epoch=1/micro_step=236/global_step=270, RunningAvgSamplesPerSec=23.6192219149906, CurrSamplesPerSec=33.58459096268449, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:41:44,718] [INFO] [logging.py:96:log_dist] [Rank 0] step=280, skipped=0, lr=[5.357988114928221e-06, 5.357988114928221e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:41:44,718] [INFO] [timer.py:258:stop] epoch=1/micro_step=276/global_step=280, RunningAvgSamplesPerSec=23.914591862369896, CurrSamplesPerSec=36.43050912715466, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:42:23,492] [INFO] [logging.py:96:log_dist] [Rank 0] step=290, skipped=0, lr=[4.693589166171466e-06, 4.693589166171466e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:42:23,492] [INFO] [timer.py:258:stop] epoch=1/micro_step=316/global_step=290, RunningAvgSamplesPerSec=24.182353423319345, CurrSamplesPerSec=32.93404717817095, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:43:02,107] [INFO] [logging.py:96:log_dist] [Rank 0] step=300, skipped=0, lr=[4.060330346189125e-06, 4.060330346189125e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:43:02,108] [INFO] [timer.py:258:stop] epoch=1/micro_step=356/global_step=300, RunningAvgSamplesPerSec=24.441503622060544, CurrSamplesPerSec=35.991128098419786, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:43:40,080] [INFO] [logging.py:96:log_dist] [Rank 0] step=310, skipped=0, lr=[3.4619278695411495e-06, 3.4619278695411495e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:43:40,081] [INFO] [timer.py:258:stop] epoch=1/micro_step=396/global_step=310, RunningAvgSamplesPerSec=24.69759048587517, CurrSamplesPerSec=37.285845626152096, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:44:19,260] [INFO] [logging.py:96:log_dist] [Rank 0] step=320, skipped=0, lr=[2.901893399904797e-06, 2.901893399904797e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:44:19,261] [INFO] [timer.py:258:stop] epoch=1/micro_step=436/global_step=320, RunningAvgSamplesPerSec=24.93446897462122, CurrSamplesPerSec=36.56896740097372, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:44:57,527] [INFO] [logging.py:96:log_dist] [Rank 0] step=330, skipped=0, lr=[2.383513442235812e-06, 2.383513442235812e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:44:57,527] [INFO] [timer.py:258:stop] epoch=1/micro_step=476/global_step=330, RunningAvgSamplesPerSec=25.165884641725835, CurrSamplesPerSec=35.56060815710096, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:45:37,653] [INFO] [logging.py:96:log_dist] [Rank 0] step=340, skipped=0, lr=[1.9098300562505266e-06, 1.9098300562505266e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:45:37,654] [INFO] [timer.py:258:stop] epoch=1/micro_step=516/global_step=340, RunningAvgSamplesPerSec=25.368728610343652, CurrSamplesPerSec=32.247460562594604, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:46:16,561] [INFO] [logging.py:96:log_dist] [Rank 0] step=350, skipped=0, lr=[1.4836230044098164e-06, 1.4836230044098164e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:46:16,561] [INFO] [timer.py:258:stop] epoch=1/micro_step=556/global_step=350, RunningAvgSamplesPerSec=25.576276606933504, CurrSamplesPerSec=36.93215706283395, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:46:54,662] [INFO] [logging.py:96:log_dist] [Rank 0] step=360, skipped=0, lr=[1.1073934391676666e-06, 1.1073934391676666e-06], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:46:54,663] [INFO] [timer.py:258:stop] epoch=1/micro_step=596/global_step=360, RunningAvgSamplesPerSec=25.78283084656346, CurrSamplesPerSec=31.665623101338372, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:47:34,087] [INFO] [logging.py:96:log_dist] [Rank 0] step=370, skipped=0, lr=[7.833492252140284e-07, 7.833492252140284e-07], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:47:34,087] [INFO] [timer.py:258:stop] epoch=1/micro_step=636/global_step=370, RunningAvgSamplesPerSec=25.964791892022447, CurrSamplesPerSec=34.99092767545847, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:48:12,267] [INFO] [logging.py:96:log_dist] [Rank 0] step=380, skipped=0, lr=[5.133919828468992e-07, 5.133919828468992e-07], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:48:12,268] [INFO] [timer.py:258:stop] epoch=1/micro_step=676/global_step=380, RunningAvgSamplesPerSec=26.15507899670456, CurrSamplesPerSec=37.44660653913578, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:48:49,226] [INFO] [logging.py:96:log_dist] [Rank 0] step=390, skipped=0, lr=[2.9910592850826983e-07, 2.9910592850826983e-07], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:48:49,227] [INFO] [timer.py:258:stop] epoch=1/micro_step=716/global_step=390, RunningAvgSamplesPerSec=26.35423730296853, CurrSamplesPerSec=36.52307551434236, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:49:27,365] [INFO] [logging.py:96:log_dist] [Rank 0] step=400, skipped=0, lr=[1.4174857797209951e-07, 1.4174857797209951e-07], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:49:27,366] [INFO] [timer.py:258:stop] epoch=1/micro_step=756/global_step=400, RunningAvgSamplesPerSec=26.53049421074311, CurrSamplesPerSec=36.23310466569185, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:50:05,119] [INFO] [logging.py:96:log_dist] [Rank 0] step=410, skipped=0, lr=[4.2243366741735457e-08, 4.2243366741735457e-08], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:50:05,120] [INFO] [timer.py:258:stop] epoch=1/micro_step=796/global_step=410, RunningAvgSamplesPerSec=26.70669284405725, CurrSamplesPerSec=39.64436670212626, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
[2024-09-10 21:50:43,356] [INFO] [logging.py:96:log_dist] [Rank 0] step=420, skipped=0, lr=[1.1742309631845861e-09, 1.1742309631845861e-09], mom=[(0.9, 0.95), (0.9, 0.95)]
[2024-09-10 21:50:43,356] [INFO] [timer.py:258:stop] epoch=1/micro_step=836/global_step=420, RunningAvgSamplesPerSec=26.869131933366237, CurrSamplesPerSec=35.752126381191324, MemAllocated=2.43GB, MaxMemAllocated=8.31GB
***** Evaluating at epoch 2/2 *****
Evaluation: accuracy = 0.782667, reward_mean = 0.206962, reward_std = 2.715212
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┓
┃ prompt ┃ higher-reward response ┃ reward ┃ lower-reward response ┃ reward ┃
┑━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━┩
β”‚ BEGINNING OF CONVERSATION: USER: I would like to β”‚ Sure! Google Colab is a great platform for running β”‚ 3.156250 β”‚ Of course! I'm happy to help you with analyzing β”‚ 2.828125 β”‚
β”‚ see a good example of analyzing Python data using β”‚ Python code and analyzing data using Python β”‚ β”‚ Python data using Colab. β”‚ β”‚
β”‚ Colab. Show me a code example. ASSISTANT: β”‚ libraries, like pandas, matplotlib and seaborn. β”‚ β”‚ First, let me clarify that Colab is a free-hosted β”‚ β”‚
β”‚ β”‚ Here's a simple example using a dataset about cars β”‚ β”‚ Jupyter notebook browser that allows you to write β”‚ β”‚
β”‚ β”‚ and analyzing the relationship between horsepower β”‚ β”‚ and run Python code in your web browser. It's a β”‚ β”‚
β”‚ β”‚ and miles per gallon (mpg). β”‚ β”‚ great tool for data analysis and visualization, and β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ we can use it to analyze Python data using various β”‚ β”‚
β”‚ β”‚ ```python β”‚ β”‚ libraries and techniques. β”‚ β”‚
β”‚ β”‚ # Import necessary libraries β”‚ β”‚ Now, let's say we have a dataset of customer β”‚ β”‚
β”‚ β”‚ import pandas as pd β”‚ β”‚ information for an e-commerce website, and we want β”‚ β”‚
β”‚ β”‚ import matplotlib.pyplot as plt β”‚ β”‚ to analyze it using Colab. Here's an example of how β”‚ β”‚
β”‚ β”‚ import seaborn as sns β”‚ β”‚ we can do this: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ 1. First, let's import the necessary libraries: β”‚ β”‚
β”‚ β”‚ # Load a sample dataset about cars (available on β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ seaborn library) β”‚ β”‚ !pip install pandas β”‚ β”‚
β”‚ β”‚ df = sns.load_dataset('mpg') β”‚ β”‚ import pandas as pd β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ import numpy as np β”‚ β”‚
β”‚ β”‚ # Print the first few rows of the dataset β”‚ β”‚ import matplotlib.pyplot as plt β”‚ β”‚
β”‚ β”‚ print(df.head()) β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ In this code, we're installing the `pandas` library β”‚ β”‚
β”‚ β”‚ # Visualize the relationship between 'horsepower' β”‚ β”‚ for data manipulation and analysis, and `numpy` for β”‚ β”‚
β”‚ β”‚ and'mpg' β”‚ β”‚ numerical computations. We're also importing the β”‚ β”‚
β”‚ β”‚ plt.figure(figsize=(10, 5)) β”‚ β”‚ `matplotlib` library for data visualization. β”‚ β”‚
β”‚ β”‚ sns.scatterplot(x='horsepower', y='mpg', data=df) β”‚ β”‚ 2. Next, let's load the dataset: β”‚ β”‚
β”‚ β”‚ plt.title('Relationship between Horsepower and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ MPG') β”‚ β”‚ customer_data = pd.read_csv('customer.csv') β”‚ β”‚
β”‚ β”‚ plt.xlabel('Horsepower') β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ plt.ylabel('Miles per Gallon') β”‚ β”‚ # Replace 'customer.csv' with the name of your β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ dataset file β”‚ β”‚
β”‚ β”‚ # Display the plot β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ plt.show() β”‚ β”‚ This code reads the customer dataset from a CSV file β”‚ β”‚
β”‚ β”‚ ``` β”‚ β”‚ named `customer.csv`. Make sure to replace this with β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ the actual name of your dataset file. β”‚ β”‚
β”‚ β”‚ This code will create a scatter plot showing the β”‚ β”‚ 3. Now, let's examine the dataset: β”‚ β”‚
β”‚ β”‚ relationship between horsepower and miles per β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ gallon (mpg) of various cars. The seaborn library β”‚ β”‚ print(customer_data.head()) β”‚ β”‚
β”‚ β”‚ comes with several built-in datasets, one of which β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ is used in this example. You can also upload your β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ data files into your Colab notebook and load them β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ into a pandas DataFrame for analysis and β”‚ β”‚ This code displays the first few rows of the dataset β”‚ β”‚
β”‚ β”‚ visualization. β”‚ β”‚ using the `head()` method of the `pd.DataFrame` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ object. This gives us a quick rundown of what the β”‚ β”‚
β”‚ β”‚ To run the code shown above in Google Colab: β”‚ β”‚ dataset looks like. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ 4. Let's analyze the dataset using some basic β”‚ β”‚
β”‚ β”‚ 1. Head over to https://colab.research.google.com β”‚ β”‚ statistical metrics: β”‚ β”‚
β”‚ β”‚ 2. Click `File` > `New notebook` β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 3. Copy and paste the code into a code cell β”‚ β”‚ print(customer_data.mean()) β”‚ β”‚
β”‚ β”‚ 4. Press `Shift` + `Enter` to execute the cell and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ see the output below the cell β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This code calculates the mean of various columns in β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ the dataset using the `mean()` method of the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ `pd.DataFrame` object. This gives us an idea of the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ average value of each column. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ 5. Let's visualize the distribution of values in one β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ of the columns: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ print(customer_data['age'].hist()) β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This code creates a histogram of the values in the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ `age` column using the `hist()` method of the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ `pd.Series` object. This gives us a visual β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ representation of the distribution of ages in the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ dataset. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ 6. Finally, let's analyze the data using a machine β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ learning algorithm: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ from sklearn.cluster import KMeans β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ customer_kmeans = β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ KMeans(n_clusters=5).fit(customer_data.drop('age', β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ axis=1)) β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ This code uses the `KMeans` algorithm from the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ `scikit-learn` library to cluster the customers β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ based on their characteristics (excluding the `age` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ column). We can use this to identify groups of β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ similar customers. β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ And that's it! These are just a few examples of how β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ you can use Colab to analyze Python data. Of course, β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ there are many more techniques and libraries you can β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ use, depending on the nature of your dataset. I hope β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ this helps you get started with analyzing your own β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ data using Colab! β”‚ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ BEGINNING OF CONVERSATION: USER: write an β”‚ Title: Designing a University Management System β”‚ 2.937500 β”‚ Assignment Title: University Management System β”‚ 3.218750 β”‚
β”‚ assignment on University management system(also β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ write sql commands, relation schema and max 5 β”‚ Objective: β”‚ β”‚ Introduction: β”‚ β”‚
β”‚ table) ASSISTANT: β”‚ The objective of this assignment is to design a β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ university management system by creating a β”‚ β”‚ A University Management System is a software β”‚ β”‚
β”‚ β”‚ relational schema, SQL commands, and implementing β”‚ β”‚ application for managing academic and administrative β”‚ β”‚
β”‚ β”‚ it using no more than five tables. The system will β”‚ β”‚ tasks. This system provides a centralized solution β”‚ β”‚
β”‚ β”‚ help manage student and staff records, courses, and β”‚ β”‚ to manage records and tasks related to students, β”‚ β”‚
β”‚ β”‚ other essential aspects of university management. β”‚ β”‚ teachers, courses, departments, and other aspects of β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ the university. The goal of this assignment is to β”‚ β”‚
β”‚ β”‚ Specifications: β”‚ β”‚ create a University Management System using a β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ relational database. β”‚ β”‚
β”‚ β”‚ 1. The system should be capable of storing and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ managing student records, including personal β”‚ β”‚ Architecture of University Management System: β”‚ β”‚
β”‚ β”‚ details, contact information, and academic records. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 2. The system should be able to store and manage β”‚ β”‚ The University Management System will have five main β”‚ β”‚
β”‚ β”‚ staff records, including personal details, contact β”‚ β”‚ tables in the relational schema: Students, Teachers, β”‚ β”‚
β”‚ β”‚ information, and employment history. β”‚ β”‚ Courses, Departments, and Attendance. These tables β”‚ β”‚
β”‚ β”‚ 3. The system should manage courses, including β”‚ β”‚ will be joined together to provide functionalities β”‚ β”‚
β”‚ β”‚ course details, instructors, and enrolled students. β”‚ β”‚ such as course registration, course management, β”‚ β”‚
β”‚ β”‚ 4. The system should support adding, editing, and β”‚ β”‚ student profiling, student performance evaluation, β”‚ β”‚
β”‚ β”‚ removing records. β”‚ β”‚ and others. β”‚ β”‚
β”‚ β”‚ 5. The system should facilitate querying and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ reporting based on the stored data. β”‚ β”‚ 1. Students Table: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ Schema: β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ The proposed relational schema for the university β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ management system is as follows: β”‚ β”‚ | student_id | INT | Unique identifier for the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ student | β”‚ β”‚
β”‚ β”‚ Table 1: Students (S) β”‚ β”‚ | first_name | VARCHAR | First name of the student | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | last_name | VARCHAR | Last name of the student | β”‚ β”‚
β”‚ β”‚ * S\_ID (Primary Key): Unique identifier for each β”‚ β”‚ | email | VARCHAR | Email address of the student | β”‚ β”‚
β”‚ β”‚ student β”‚ β”‚ | course_id | INT | Course that student is enrolled β”‚ β”‚
β”‚ β”‚ * FirstName: Student's first name β”‚ β”‚ in | β”‚ β”‚
β”‚ β”‚ * LastName: Student's last name β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ * MiddleName: Student's middle name β”‚ β”‚ SQL Command to create the Students table: β”‚ β”‚
β”‚ β”‚ * Gender: Student's gender β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ * DateOfBirth: Student's date of birth β”‚ β”‚ CREATE TABLE students ( β”‚ β”‚
β”‚ β”‚ * Address: Student's address β”‚ β”‚ student_id INT PRIMARY KEY, β”‚ β”‚
β”‚ β”‚ * ContactNumber: Student's contact number β”‚ β”‚ first_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * Email: Student's email address β”‚ β”‚ last_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * RegistrationNumber: Student's registration number β”‚ β”‚ email VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * EnrollmentStatus: Student's enrollment status β”‚ β”‚ course_id INT β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ); β”‚ β”‚
β”‚ β”‚ Table 2: Staff ( Employees ) β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ 1. Teachers Table: β”‚ β”‚
β”‚ β”‚ * Employee\_ID (Primary Key): Unique identifier for β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ each staff member β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ * FirstName: Staff member's first name β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ * LastName: Staff member's last name β”‚ β”‚ | teacher_id | INT | Unique identifier for the β”‚ β”‚
β”‚ β”‚ * MiddleName: Staff member's middle name β”‚ β”‚ teacher | β”‚ β”‚
β”‚ β”‚ * Gender: Staff member's gender β”‚ β”‚ | first_name | VARCHAR | First name of the teacher | β”‚ β”‚
β”‚ β”‚ * DateOfBirth: Staff member's date of birth β”‚ β”‚ | last_name | VARCHAR | Last name of the teacher | β”‚ β”‚
β”‚ β”‚ * Address: Staff member's address β”‚ β”‚ | email | VARCHAR | Email address of the teacher | β”‚ β”‚
β”‚ β”‚ * ContactNumber: Staff member's contact number β”‚ β”‚ | department_id | INT | Department that teacher is β”‚ β”‚
β”‚ β”‚ * Email: Staff member's email address β”‚ β”‚ associated with | β”‚ β”‚
β”‚ β”‚ * Position: Staff member's job position β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ * Department: Staff member's department β”‚ β”‚ SQL Command to create the Teachers table: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ Table 3: Courses (C) β”‚ β”‚ CREATE TABLE teachers ( β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ teacher_id INT PRIMARY KEY, β”‚ β”‚
β”‚ β”‚ * Course\_ID (Primary Key): Unique identifier for β”‚ β”‚ first_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ each course β”‚ β”‚ last_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * CourseName: Course name β”‚ β”‚ email VARCHAR(50), β”‚ β”‚
β”‚ β”‚ * CourseCode: Course code β”‚ β”‚ department_id INT β”‚ β”‚
β”‚ β”‚ * Description: Course description β”‚ β”‚ ); β”‚ β”‚
β”‚ β”‚ * Instructor\_ID: ID of the instructor for the β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ course (Foreign key referencing Staff) β”‚ β”‚ 1. Courses Table: β”‚ β”‚
β”‚ β”‚ * Department: Department the course belongs to β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ (Foreign key referencing Departments) β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ Table 4: Students\_Courses (SC) β”‚ β”‚ | course_id | INT | Unique identifier for the course β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | β”‚ β”‚
β”‚ β”‚ * SC\_ID (Primary Key): Unique identifier for the β”‚ β”‚ | course_name | VARCHAR | Name of the course | β”‚ β”‚
β”‚ β”‚ student-course relationship β”‚ β”‚ | department_id | INT | Department that course β”‚ β”‚
β”‚ β”‚ * S\_ID (Foreign key): ID of the student β”‚ β”‚ belongs to | β”‚ β”‚
β”‚ β”‚ (Referencing Students) β”‚ β”‚ | instructor_id | INT | ID of the teacher who is β”‚ β”‚
β”‚ β”‚ * Course\_ID (Foreign key): ID of the course β”‚ β”‚ teaching the course | β”‚ β”‚
β”‚ β”‚ (Referencing Courses) β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ * EnrollmentDate: Date when the student enrolled in β”‚ β”‚ SQL Command to create the Courses table: β”‚ β”‚
β”‚ β”‚ the course β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ * Grade: Final grade earned by the student in the β”‚ β”‚ CREATE TABLE courses ( β”‚ β”‚
β”‚ β”‚ course β”‚ β”‚ course_id INT PRIMARY KEY, β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ course_name VARCHAR(50), β”‚ β”‚
β”‚ β”‚ Table 5: Departments (D) β”‚ β”‚ department_id INT, β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ instructor_id INT β”‚ β”‚
β”‚ β”‚ * Department\_ID (Primary Key): Unique identifier β”‚ β”‚ ); β”‚ β”‚
β”‚ β”‚ for each department β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ * DepartmentName: Department name β”‚ β”‚ 1. Departments Table: β”‚ β”‚
β”‚ β”‚ * DepartmentChair: ID of the department chair β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ (Foreign key referencing Staff) β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ SQL Commands: β”‚ β”‚ | department_id | INT | Unique identifier for the β”‚ β”‚
β”‚ β”‚ The following SQL commands will help in β”‚ β”‚ department | β”‚ β”‚
β”‚ β”‚ implementing and managing the university management β”‚ β”‚ | department_name | VARCHAR | Name of the department β”‚ β”‚
β”‚ β”‚ system: β”‚ β”‚ | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 1. INSERT INTO Students (Student\_ID, FirstName, β”‚ β”‚ SQL Command to create the Departments table: β”‚ β”‚
β”‚ β”‚ LastName, MiddleName, Gender, DateOfBirth, Address, β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ ContactNumber, Email, RegistrationNumber, β”‚ β”‚ CREATE TABLE departments ( β”‚ β”‚
β”‚ β”‚ EnrollmentStatus) β”‚ β”‚ department_id INT PRIMARY KEY, β”‚ β”‚
β”‚ β”‚ 2. INSERT INTO Staff (Employee\_ID, FirstName, β”‚ β”‚ department_name VARCHAR(50) β”‚ β”‚
β”‚ β”‚ LastName, MiddleName, Gender, DateOfBirth, Address, β”‚ β”‚ ); β”‚ β”‚
β”‚ β”‚ ContactNumber, Email, Position, Department) β”‚ β”‚ ``` β”‚ β”‚
β”‚ β”‚ 3. INSERT INTO Courses (Course\_ID, CourseName, β”‚ β”‚ 1. Attendance Table: β”‚ β”‚
β”‚ β”‚ CourseCode, Description, Instructor\_ID, β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ Department) β”‚ β”‚ | Field Name | Data Type | Description | β”‚ β”‚
β”‚ β”‚ 4. INSERT INTO Students\_Courses (SC\_ID, S\_ID, β”‚ β”‚ | --- | --- | --- | β”‚ β”‚
β”‚ β”‚ Course\_ID, EnrollmentDate, Grade) β”‚ β”‚ | attendance_id | INT | Unique identifier for β”‚ β”‚
β”‚ β”‚ 5. INSERT INTO Departments (Department\_ID, β”‚ β”‚ attendance record | β”‚ β”‚
β”‚ β”‚ DepartmentName, DepartmentChair) β”‚ β”‚ | student_id | INT | ID of the student attending the β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ class | β”‚ β”‚
β”‚ β”‚ 1. UPDATE Students SET FirstName = 'NewFirstName', β”‚ β”‚ | course_id | INT | ID of the course attended | β”‚ β”‚
β”‚ β”‚ LastName = 'NewLastName', Address = 'NewAddress' β”‚ β”‚ | date_time | DATE | Date and time of the class | β”‚ β”‚
β”‚ β”‚ WHERE Student\_ID = ' β”‚ β”‚ | status | VARCHAR | Status of the student's β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ attendance (Attended/Absent) | β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ SQL Command to create the Attendance table: β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ ```sql β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ CREATE TABLE attendance ( β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ attendance_id INT PRIMARY KEY, β”‚ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ BEGINNING OF CONVERSATION: USER: create a cheat β”‚ Hello! As a respectful and helpful AI assistant, β”‚ 3.296875 β”‚ A cheat sheet for data management in clinical trials β”‚ -2.515625 β”‚
β”‚ sheet for data management in clinical trials, β”‚ I'm here to help you with your question on data β”‚ β”‚ can include a short description of the necessary β”‚ β”‚
β”‚ including a short description of the necessary β”‚ management in clinical trials. Here's a cheat sheet β”‚ β”‚ documents, such as case report forms (CRFs), β”‚ β”‚
β”‚ documents, to do's and main activities ASSISTANT: β”‚ that summarizes the necessary documents, to-do's, β”‚ β”‚ informed consent forms (ICFs), standard operating β”‚ β”‚
β”‚ β”‚ and main activities for successful data management β”‚ β”‚ procedures (SOPs), and data safety monitoring plans β”‚ β”‚
β”‚ β”‚ in clinical trials: β”‚ β”‚ (DSMPs). The to do's can include compiling these β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ documents, collecting and managing data, maintaining β”‚ β”‚
β”‚ β”‚ Necessary Documents: β”‚ β”‚ a trial master file (TMF), and conducting β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ statistical analyses. The main activities include β”‚ β”‚
β”‚ β”‚ 1. Study Protocol: This document outlines the β”‚ β”‚ conducting a risk assessment, monitoring data β”‚ β”‚
β”‚ β”‚ overall plan for the clinical trial, including the β”‚ β”‚ quality, ensuring adherence to protocols, and β”‚ β”‚
β”‚ β”‚ objectives, inclusion/exclusion criteria, and the β”‚ β”‚ managing study events. β”‚ β”‚
β”‚ β”‚ methods for data collection and analysis. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 2. Data Management Plan (DMP): This document β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ details the strategies and procedures for β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ collecting, storing, and analyzing the data β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ generated during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 3. Case Report Forms (CRFs): These forms are used β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ to collect data from participants during the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ clinical trial, and they should be designed to β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ capture the relevant information needed for the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ study. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 4. Data Query Management Plan: This plan outlines β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ the procedures for addressing data discrepancies β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ and resolving queries that arise during the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 5. Data Monitoring Plan: This plan details the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ procedures for monitoring the data collected during β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ the clinical trial, including the methods for β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ detecting and addressing anydata issues. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ To-Do's: β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 1. Develop a comprehensive Data Management Plan β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ (DMP) that outlines the strategies and procedures β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ for collecting, storing, and analyzing the data β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ generated during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 2. Train the study team on the data management β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ procedures outlined in the DMP. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 3. Develop and implement a robust data quality β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ control process to ensure the accuracy, β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ completeness, and consistency of the data collected β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ during the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 4. Regularly review and update the DMP as needed to β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ ensure that it remains relevant and effective β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ throughout the clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 5. Monitor the data collected during the clinical β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ trial in accordance with the Data Monitoring Plan β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ to ensure that the data is accurate, complete, and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ consistent. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ Main Activities: β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 1. Data Collection: This involves the use of CRFs β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ and other data collection tools to capture the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ relevant data from participants during the clinical β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 2. Data Cleaning and Validation: This involves β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ reviewing and correcting any errors or β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ inconsistencies in the data to ensure that it is β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ accurate and complete. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 3. Data Integration: This involves combining data β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ from multiple sources (e.g., CRFs, laboratory β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ results, medical imaging) to create a comprehensive β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ view of the data. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 4. Data Analysis: This involves using statistical β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ methods and other techniques to extract insights β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ and meaning from the data collected during the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ clinical trial. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ 5. Data Reporting: This involves presenting the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ findings of the clinical trial in a clear and β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ concise manner, using graphs, tables, and other β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ visual aids to help stakeholders understand the β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ results. β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ I hope this cheat sheet is helpful in providing you β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ with a comprehensive overview of the necessary β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ documents, to-do's, and main activities for β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ successful data management in clinical trials. If β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ you have any further questions or need more β”‚ β”‚ β”‚ β”‚
β”‚ β”‚ information, please don't hesitate to ask! β”‚ β”‚ β”‚ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
Saving model to "/home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910" ...
Saving 16-bit model...
[2024-09-10 21:51:26,105] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step422 is ready now!
[2024-09-10 21:51:26,105] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step422 is ready now!
[2024-09-10 21:51:26,105] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step422 is ready now!
[2024-09-10 21:51:26,105] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step422 is ready now!
[2024-09-10 21:51:26,105] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step422 is ready now!
[2024-09-10 21:51:26,105] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step422 is ready now!
[2024-09-10 21:51:26,106] [INFO] [logging.py:96:log_dist] [Rank 0] [Torch] Checkpoint global_step422 is about to be saved!
[2024-09-10 21:51:26,106] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step422 is ready now!
[2024-09-10 21:51:26,107] [INFO] [engine.py:3591:save_16bit_model] Saving model weights to /home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910/pytorch_model.bin, tag: global_step422
[2024-09-10 21:51:26,107] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910/pytorch_model.bin...
[2024-09-10 21:51:27,657] [INFO] [launch.py:351:main] Process 3553586 exits successfully.
[2024-09-10 21:51:27,657] [INFO] [launch.py:351:main] Process 3553588 exits successfully.
[2024-09-10 21:51:27,658] [INFO] [launch.py:351:main] Process 3553583 exits successfully.
[2024-09-10 21:51:27,658] [INFO] [launch.py:351:main] Process 3553587 exits successfully.
[2024-09-10 21:51:27,890] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/juntao/Projects/roo-dev-cty/experiments/outputs/score_lm/gpt2_774m_0910/pytorch_model.bin.
[2024-09-10 21:51:27,890] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step422 is ready now!
Model saved!
[2024-09-10 21:51:28,658] [INFO] [launch.py:351:main] Process 3553585 exits successfully.
[2024-09-10 21:51:28,659] [INFO] [launch.py:351:main] Process 3553589 exits successfully.
[2024-09-10 21:51:28,659] [INFO] [launch.py:351:main] Process 3553584 exits successfully.
[2024-09-10 21:51:38,660] [INFO] [launch.py:351:main] Process 3553582 exits successfully.