submit_test / train_detector.py
caliangandrew's picture
Upload 3 files
2a84f8d verified
# This script was adapted from the DeepfakeBench training code,
# originally authored by Zhiyuan Yan (zhiyuanyan@link.cuhk.edu.cn)
# Original: https://github.com/SCLBD/DeepfakeBench/blob/main/training/train.py
# BitMind's modifications include adding a testing phase, changing the
# data load/split pipeline to work with subnet 34's image augmentations
# and datasets from BitMind HuggingFace repositories, quality of life CLI args,
# logging changes, etc.
import os
import sys
import argparse
from os.path import join
import random
import datetime
import time
import yaml
from tqdm import tqdm
import numpy as np
from datetime import timedelta
from copy import deepcopy
from PIL import Image as pil_image
from pathlib import Path
import gc
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.optim as optim
from torch.utils.data.distributed import DistributedSampler
import torch.distributed as dist
from torch.utils.data import DataLoader
from optimizor.SAM import SAM
from optimizor.LinearLR import LinearDecayLR
from trainer.trainer import Trainer
from arena.detectors.UCF.detectors import DETECTOR
from metrics.utils import parse_metric_for_print
from logger import create_logger, RankFilter
from huggingface_hub import hf_hub_download
# BitMind imports (not from original Deepfake Bench repo)
from bitmind.dataset_processing.load_split_data import load_datasets, create_real_fake_datasets
from bitmind.image_transforms import base_transforms, random_aug_transforms
from bitmind.constants import DATASET_META, FACE_TRAINING_DATASET_META
from config.constants import (
CONFIG_PATH,
WEIGHTS_DIR,
HF_REPO,
BACKBONE_CKPT
)
parser = argparse.ArgumentParser(description='Process some paths.')
parser.add_argument('--detector_path', type=str, default=CONFIG_PATH, help='path to detector YAML file')
parser.add_argument('--faces_only', dest='faces_only', action='store_true', default=False)
parser.add_argument('--no-save_ckpt', dest='save_ckpt', action='store_false', default=True)
parser.add_argument('--no-save_feat', dest='save_feat', action='store_false', default=True)
parser.add_argument("--ddp", action='store_true', default=False)
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--workers', type=int, default=os.cpu_count() - 1,
help='number of workers for data loading')
parser.add_argument('--epochs', type=int, default=None, help='number of training epochs')
args = parser.parse_args()
torch.cuda.set_device(args.local_rank)
print(f"torch.cuda.device(0): {torch.cuda.device(0)}")
print(f"torch.cuda.get_device_name(0): {torch.cuda.get_device_name(0)}")
def ensure_backbone_is_available(logger,
weights_dir=WEIGHTS_DIR,
model_filename=BACKBONE_CKPT,
hugging_face_repo_name=HF_REPO):
destination_path = Path(weights_dir) / Path(model_filename)
if not destination_path.parent.exists():
destination_path.parent.mkdir(parents=True, exist_ok=True)
logger.info(f"Created directory {destination_path.parent}.")
if not destination_path.exists():
model_path = hf_hub_download(hugging_face_repo_name, model_filename)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.load(model_path, map_location=device)
torch.save(model, destination_path)
del model
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info(f"Downloaded backbone {model_filename} to {destination_path}.")
else:
logger.info(f"{model_filename} backbone already present at {destination_path}.")
def init_seed(config):
if config['manualSeed'] is None:
config['manualSeed'] = random.randint(1, 10000)
random.seed(config['manualSeed'])
if config['cuda']:
torch.manual_seed(config['manualSeed'])
torch.cuda.manual_seed_all(config['manualSeed'])
def custom_collate_fn(batch):
images, labels, source_labels = zip(*batch)
images = torch.stack(images, dim=0) # Stack image tensors into a single tensor
labels = torch.LongTensor(labels)
source_labels = torch.LongTensor(source_labels)
data_dict = {
'image': images,
'label': labels,
'label_spe': source_labels,
'landmark': None,
'mask': None
}
return data_dict
def prepare_datasets(config, logger):
start_time = log_start_time(logger, "Loading and splitting individual datasets")
real_datasets, fake_datasets = load_datasets(dataset_meta=config['dataset_meta'],
expert=config['faces_only'],
split_transforms=config['split_transforms'])
log_finish_time(logger, "Loading and splitting individual datasets", start_time)
start_time = log_start_time(logger, "Creating real fake dataset splits")
train_dataset, val_dataset, test_dataset = \
create_real_fake_datasets(real_datasets,
fake_datasets,
config['split_transforms']['train']['transform'],
config['split_transforms']['validation']['transform'],
config['split_transforms']['test']['transform'],
source_labels=True)
log_finish_time(logger, "Creating real fake dataset splits", start_time)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=config['train_batchSize'],
shuffle=True,
num_workers=config['workers'],
drop_last=True,
collate_fn=custom_collate_fn)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=config['train_batchSize'],
shuffle=True,
num_workers=config['workers'],
drop_last=True,
collate_fn=custom_collate_fn)
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=config['train_batchSize'],
shuffle=True,
num_workers=config['workers'],
drop_last=True,
collate_fn=custom_collate_fn)
print(f"Train size: {len(train_loader.dataset)}")
print(f"Validation size: {len(val_loader.dataset)}")
print(f"Test size: {len(test_loader.dataset)}")
return train_loader, val_loader, test_loader
def choose_optimizer(model, config):
opt_name = config['optimizer']['type']
if opt_name == 'sgd':
optimizer = optim.SGD(
params=model.parameters(),
lr=config['optimizer'][opt_name]['lr'],
momentum=config['optimizer'][opt_name]['momentum'],
weight_decay=config['optimizer'][opt_name]['weight_decay']
)
return optimizer
elif opt_name == 'adam':
optimizer = optim.Adam(
params=model.parameters(),
lr=config['optimizer'][opt_name]['lr'],
weight_decay=config['optimizer'][opt_name]['weight_decay'],
betas=(config['optimizer'][opt_name]['beta1'], config['optimizer'][opt_name]['beta2']),
eps=config['optimizer'][opt_name]['eps'],
amsgrad=config['optimizer'][opt_name]['amsgrad'],
)
return optimizer
elif opt_name == 'sam':
optimizer = SAM(
model.parameters(),
optim.SGD,
lr=config['optimizer'][opt_name]['lr'],
momentum=config['optimizer'][opt_name]['momentum'],
)
else:
raise NotImplementedError('Optimizer {} is not implemented'.format(config['optimizer']))
return optimizer
def choose_scheduler(config, optimizer):
if config['lr_scheduler'] is None:
return None
elif config['lr_scheduler'] == 'step':
scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=config['lr_step'],
gamma=config['lr_gamma'],
)
return scheduler
elif config['lr_scheduler'] == 'cosine':
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=config['lr_T_max'],
eta_min=config['lr_eta_min'],
)
return scheduler
elif config['lr_scheduler'] == 'linear':
scheduler = LinearDecayLR(
optimizer,
config['nEpochs'],
int(config['nEpochs']/4),
)
else:
raise NotImplementedError('Scheduler {} is not implemented'.format(config['lr_scheduler']))
def choose_metric(config):
metric_scoring = config['metric_scoring']
if metric_scoring not in ['eer', 'auc', 'acc', 'ap']:
raise NotImplementedError('metric {} is not implemented'.format(metric_scoring))
return metric_scoring
def log_start_time(logger, process_name):
"""Log the start time of a process."""
start_time = time.time()
logger.info(f"{process_name} Start Time: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))}")
return start_time
def log_finish_time(logger, process_name, start_time):
"""Log the finish time and elapsed time of a process."""
finish_time = time.time()
elapsed_time = finish_time - start_time
# Convert elapsed time into hours, minutes, and seconds
hours, rem = divmod(elapsed_time, 3600)
minutes, seconds = divmod(rem, 60)
# Log the finish time and elapsed time
logger.info(f"{process_name} Finish Time: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(finish_time))}")
logger.info(f"{process_name} Elapsed Time: {int(hours)} hours, {int(minutes)} minutes, {seconds:.2f} seconds")
def save_config(config, outputs_dir):
"""
Saves a config dictionary as both a pickle file and a YAML file, ensuring only basic types are saved.
Also, lists like 'mean' and 'std' are saved in flow style (on a single line).
Args:
config (dict): The configuration dictionary to save.
outputs_dir (str): The directory path where the files will be saved.
"""
def is_basic_type(value):
"""
Check if a value is a basic data type that can be saved in YAML.
Basic types include int, float, str, bool, list, and dict.
"""
return isinstance(value, (int, float, str, bool, list, dict, type(None)))
def filter_dict(data_dict):
"""
Recursively filter out any keys from the dictionary whose values contain non-basic types (e.g., objects).
"""
if not isinstance(data_dict, dict):
return data_dict
filtered_dict = {}
for key, value in data_dict.items():
if isinstance(value, dict):
# Recursively filter nested dictionaries
nested_dict = filter_dict(value)
if nested_dict: # Only add non-empty dictionaries
filtered_dict[key] = nested_dict
elif is_basic_type(value):
# Add if the value is a basic type
filtered_dict[key] = value
else:
# Skip the key if the value is not a basic type (e.g., an object)
print(f"Skipping key '{key}' because its value is of type {type(value)}")
return filtered_dict
def save_dict_to_yaml(data_dict, file_path):
"""
Saves a dictionary to a YAML file, excluding any keys where the value is an object or contains an object.
Additionally, ensures that specific lists (like 'mean' and 'std') are saved in flow style.
Args:
data_dict (dict): The dictionary to save.
file_path (str): The local file path where the YAML file will be saved.
"""
# Custom representer for lists to force flow style (compact lists)
class FlowStyleList(list):
pass
def flow_style_list_representer(dumper, data):
return dumper.represent_sequence('tag:yaml.org,2002:seq', data, flow_style=True)
yaml.add_representer(FlowStyleList, flow_style_list_representer)
# Preprocess specific lists to be in flow style
if 'mean' in data_dict:
data_dict['mean'] = FlowStyleList(data_dict['mean'])
if 'std' in data_dict:
data_dict['std'] = FlowStyleList(data_dict['std'])
try:
# Filter the dictionary
filtered_dict = filter_dict(data_dict)
# Save the filtered dictionary as YAML
with open(file_path, 'w') as f:
yaml.dump(filtered_dict, f, default_flow_style=False) # Save with default block style except for FlowStyleList
print(f"Filtered dictionary successfully saved to {file_path}")
except Exception as e:
print(f"Error saving dictionary to YAML: {e}")
# Save as YAML
save_dict_to_yaml(config, outputs_dir + '/config.yaml')
def main():
torch.cuda.empty_cache()
gc.collect()
# parse options and load config
with open(args.detector_path, 'r') as f:
config = yaml.safe_load(f)
with open(os.getcwd() + '/config/train_config.yaml', 'r') as f:
config2 = yaml.safe_load(f)
if 'label_dict' in config:
config2['label_dict']=config['label_dict']
config.update(config2)
config['workers'] = args.workers
config['local_rank']=args.local_rank
if config['dry_run']:
config['nEpochs'] = 0
config['save_feat']=False
if args.epochs: config['nEpochs'] = args.epochs
config['split_transforms'] = {'train': {'name': 'base_transforms',
'transform': base_transforms},
'validation': {'name': 'base_transforms',
'transform': base_transforms},
'test': {'name': 'base_transforms',
'transform': base_transforms}}
config['faces_only'] = args.faces_only
config['dataset_meta'] = FACE_TRAINING_DATASET_META if config['faces_only'] else DATASET_META
dataset_names = [item["path"] for datasets in config['dataset_meta'].values() for item in datasets]
config['train_dataset'] = dataset_names
config['save_ckpt'] = args.save_ckpt
config['save_feat'] = args.save_feat
config['specific_task_number'] = len(config['dataset_meta']["fake"]) + 1
if config['lmdb']:
config['dataset_json_folder'] = 'preprocessing/dataset_json_v3'
# create logger
timenow=datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
outputs_dir = os.path.join(
config['log_dir'],
config['model_name'] + '_' + timenow
)
os.makedirs(outputs_dir, exist_ok=True)
logger = create_logger(os.path.join(outputs_dir, 'training.log'))
config['log_dir'] = outputs_dir
logger.info('Save log to {}'.format(outputs_dir))
config['ddp']= args.ddp
# init seed
init_seed(config)
# set cudnn benchmark if needed
if config['cudnn']:
cudnn.benchmark = True
if config['ddp']:
# dist.init_process_group(backend='gloo')
dist.init_process_group(
backend='nccl',
timeout=timedelta(minutes=30)
)
logger.addFilter(RankFilter(0))
ensure_backbone_is_available(logger=logger,
model_filename=config['pretrained'].split('/')[-1],
hugging_face_repo_name='bitmind/' + config['model_name'])
# prepare the model (detector)
model_class = DETECTOR[config['model_name']]
model = model_class(config)
# prepare the optimizer
optimizer = choose_optimizer(model, config)
# prepare the scheduler
scheduler = choose_scheduler(config, optimizer)
# prepare the metric
metric_scoring = choose_metric(config)
# prepare the trainer
trainer = Trainer(config, model, optimizer, scheduler, logger, metric_scoring)
# prepare the data loaders
train_loader, val_loader, test_loader = prepare_datasets(config, logger)
# print configuration
logger.info("--------------- Configuration ---------------")
params_string = "Parameters: \n"
for key, value in config.items():
params_string += "{}: {}".format(key, value) + "\n"
logger.info(params_string)
# save training configs
save_config(config, outputs_dir)
# start training
start_time = log_start_time(logger, "Training")
for epoch in range(config['start_epoch'], config['nEpochs'] + 1):
trainer.model.epoch = epoch
best_metric = trainer.train_epoch(
epoch,
train_data_loader=train_loader,
validation_data_loaders={'val':val_loader}
)
if best_metric is not None:
logger.info(f"===> Epoch[{epoch}] end with validation {metric_scoring}: {parse_metric_for_print(best_metric)}!")
logger.info("Stop Training on best Validation metric {}".format(parse_metric_for_print(best_metric)))
log_finish_time(logger, "Training", start_time)
# test
start_time = log_start_time(logger, "Test")
trainer.eval(eval_data_loaders={'test':test_loader}, eval_stage="test")
log_finish_time(logger, "Test", start_time)
# update
if 'svdd' in config['model_name']:
model.update_R(epoch)
if scheduler is not None:
scheduler.step()
# close the tensorboard writers
for writer in trainer.writers.values():
writer.close()
torch.cuda.empty_cache()
gc.collect()
if __name__ == '__main__':
main()