calebnwokocha commited on
Commit
38aba7d
·
verified ·
1 Parent(s): 2d74895

Update De_Rham_Cohomology_of_smooth_manifolds.cpp

Browse files
De_Rham_Cohomology_of_smooth_manifolds.cpp CHANGED
@@ -26,30 +26,30 @@ int main (/* implementation-defined */)
26
  Suppose_literal (for_all_p_there_is_an_open_neighbourhood_U, true);
27
  Suppose_literal (U_is_homeomorphic_to_an_open_subset_V, true);
28
 
29
- auto manifold_of_dimension_n = M_is_Hausdorff. And (points_can_be_seperated_by_open_sets). And (M_is_second_countable). And (M_has_a_countable_topological_base). And (p_is_element_of_M). And (U_is_proper_subset_of_M). And (V_is_subset_of_real_coordinate_space_of_dimension_n). And (for_all_p_there_is_an_open_neighbourhood_U). And (U_is_homeomorphic_to_an_open_subset_V). Implying (a_topological_space_M);
30
-
31
- bool M_is_a_manifold_of_dimension_n = manifold_of_dimension_n. Value (/* truth value */);
32
- Suppose_literal (let_M_be_a_manifold_of_dimension_n, M_is_a_manifold_of_dimension_n);
33
-
34
- // like the supposed literal a_topological_space_M, you may introduce a function for each literal below
35
- Suppose_literal (U_is_element_of_M, true);
36
- Suppose_literal (a_pair_U_psi_where_U_is_open, true);
37
- Suppose_literal (psi_maps_U_to_V_a_homeomorphism_to_some_open_V, true);
38
-
39
- auto chart = let_M_be_a_manifold_of_dimension_n. And (U_is_element_of_M). And (a_pair_U_psi_where_U_is_open). And (psi_maps_U_to_V_a_homeomorphism_to_some_open_V);
40
-
41
- Suppose_literal (the_pair_U_phi_is_a_chart_M, chart. Value(/* truth value */));
42
-
43
- // like the supposed literal a_topological_space_M, you may introduce a function for each literal below
44
- Suppose_literal (p_is_element_of_the_pair_U_phi, true);
45
- Suppose_literal (p_is_element_of_U, true);
46
- Suppose_literal (for_all_p_for_some_chart, true);
47
-
48
- auto remark_2_1 = the_pair_U_phi_is_a_chart_M. And (p_is_element_of_U). Implying (p_is_element_of_the_pair_U_phi);
49
-
50
- auto third_condition_from_definition_2_1 = for_all_p_there_is_an_open_neighbourhood_U. And (U_is_element_of_M). And (U_is_homeomorphic_to_an_open_subset_V). And (V_is_subset_of_real_coordinate_space_of_dimension_n);
51
-
52
- auto rewrite_third_condition_from_definition_2_1 = for_all_p_for_some_chart. Implying (third_condition_from_definition_2_1);
53
 
54
  return 0;
55
  }
 
26
  Suppose_literal (for_all_p_there_is_an_open_neighbourhood_U, true);
27
  Suppose_literal (U_is_homeomorphic_to_an_open_subset_V, true);
28
 
29
+ Satisfy::Formula manifold_of_dimension_n = M_is_Hausdorff. And (points_can_be_seperated_by_open_sets). And (M_is_second_countable). And (M_has_a_countable_topological_base). And (p_is_element_of_M). And (U_is_proper_subset_of_M). And (V_is_subset_of_real_coordinate_space_of_dimension_n). And (for_all_p_there_is_an_open_neighbourhood_U). And (U_is_homeomorphic_to_an_open_subset_V). Implying (a_topological_space_M);
30
+
31
+ bool M_is_a_manifold_of_dimension_n = manifold_of_dimension_n. Value (/* truth value */);
32
+ Suppose_literal (let_M_be_a_manifold_of_dimension_n, M_is_a_manifold_of_dimension_n);
33
+
34
+ // like the supposed literal a_topological_space_M, you may introduce a function for each literal below
35
+ Suppose_literal (U_is_element_of_M, true);
36
+ Suppose_literal (a_pair_U_psi_where_U_is_open, true);
37
+ Suppose_literal (psi_maps_U_to_V_a_homeomorphism_to_some_open_V, true);
38
+
39
+ auto chart = let_M_be_a_manifold_of_dimension_n. And (U_is_element_of_M). And (a_pair_U_psi_where_U_is_open). And (psi_maps_U_to_V_a_homeomorphism_to_some_open_V);
40
+
41
+ Suppose_literal (the_pair_U_phi_is_a_chart_M, chart. Value(/* truth value */));
42
+
43
+ // like the supposed literal a_topological_space_M, you may introduce a function for each literal below
44
+ Suppose_literal (p_is_element_of_the_pair_U_phi, true);
45
+ Suppose_literal (p_is_element_of_U, true);
46
+ Suppose_literal (for_all_p_for_some_chart, true);
47
+
48
+ Satisfy::Formula remark_2_1 = the_pair_U_phi_is_a_chart_M. And (p_is_element_of_U). Implying (p_is_element_of_the_pair_U_phi);
49
+
50
+ auto third_condition_from_definition_2_1 = for_all_p_there_is_an_open_neighbourhood_U. And (U_is_element_of_M). And (U_is_homeomorphic_to_an_open_subset_V). And (V_is_subset_of_real_coordinate_space_of_dimension_n);
51
+
52
+ Satisfy::Formula rewrite_third_condition_from_definition_2_1 = for_all_p_for_some_chart. Implying (third_condition_from_definition_2_1);
53
 
54
  return 0;
55
  }