Update De_Rham_Cohomology_of_smooth_manifolds.cpp
Browse files
De_Rham_Cohomology_of_smooth_manifolds.cpp
CHANGED
|
@@ -26,30 +26,30 @@ int main (/* implementation-defined */)
|
|
| 26 |
Suppose_literal (for_all_p_there_is_an_open_neighbourhood_U, true);
|
| 27 |
Suppose_literal (U_is_homeomorphic_to_an_open_subset_V, true);
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
bool M_is_a_manifold_of_dimension_n = manifold_of_dimension_n. Value (/* truth value */);
|
| 32 |
-
Suppose_literal (let_M_be_a_manifold_of_dimension_n, M_is_a_manifold_of_dimension_n);
|
| 33 |
-
|
| 34 |
-
// like the supposed literal a_topological_space_M, you may introduce a function for each literal below
|
| 35 |
-
Suppose_literal (U_is_element_of_M, true);
|
| 36 |
-
Suppose_literal (a_pair_U_psi_where_U_is_open, true);
|
| 37 |
-
Suppose_literal (psi_maps_U_to_V_a_homeomorphism_to_some_open_V, true);
|
| 38 |
-
|
| 39 |
-
auto chart = let_M_be_a_manifold_of_dimension_n. And (U_is_element_of_M). And (a_pair_U_psi_where_U_is_open). And (psi_maps_U_to_V_a_homeomorphism_to_some_open_V);
|
| 40 |
-
|
| 41 |
-
Suppose_literal (the_pair_U_phi_is_a_chart_M, chart. Value(/* truth value */));
|
| 42 |
-
|
| 43 |
-
// like the supposed literal a_topological_space_M, you may introduce a function for each literal below
|
| 44 |
-
Suppose_literal (p_is_element_of_the_pair_U_phi, true);
|
| 45 |
-
Suppose_literal (p_is_element_of_U, true);
|
| 46 |
-
Suppose_literal (for_all_p_for_some_chart, true);
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
auto third_condition_from_definition_2_1 = for_all_p_there_is_an_open_neighbourhood_U. And (U_is_element_of_M). And (U_is_homeomorphic_to_an_open_subset_V). And (V_is_subset_of_real_coordinate_space_of_dimension_n);
|
| 51 |
-
|
| 52 |
-
|
| 53 |
|
| 54 |
return 0;
|
| 55 |
}
|
|
|
|
| 26 |
Suppose_literal (for_all_p_there_is_an_open_neighbourhood_U, true);
|
| 27 |
Suppose_literal (U_is_homeomorphic_to_an_open_subset_V, true);
|
| 28 |
|
| 29 |
+
Satisfy::Formula manifold_of_dimension_n = M_is_Hausdorff. And (points_can_be_seperated_by_open_sets). And (M_is_second_countable). And (M_has_a_countable_topological_base). And (p_is_element_of_M). And (U_is_proper_subset_of_M). And (V_is_subset_of_real_coordinate_space_of_dimension_n). And (for_all_p_there_is_an_open_neighbourhood_U). And (U_is_homeomorphic_to_an_open_subset_V). Implying (a_topological_space_M);
|
| 30 |
+
|
| 31 |
+
bool M_is_a_manifold_of_dimension_n = manifold_of_dimension_n. Value (/* truth value */);
|
| 32 |
+
Suppose_literal (let_M_be_a_manifold_of_dimension_n, M_is_a_manifold_of_dimension_n);
|
| 33 |
+
|
| 34 |
+
// like the supposed literal a_topological_space_M, you may introduce a function for each literal below
|
| 35 |
+
Suppose_literal (U_is_element_of_M, true);
|
| 36 |
+
Suppose_literal (a_pair_U_psi_where_U_is_open, true);
|
| 37 |
+
Suppose_literal (psi_maps_U_to_V_a_homeomorphism_to_some_open_V, true);
|
| 38 |
+
|
| 39 |
+
auto chart = let_M_be_a_manifold_of_dimension_n. And (U_is_element_of_M). And (a_pair_U_psi_where_U_is_open). And (psi_maps_U_to_V_a_homeomorphism_to_some_open_V);
|
| 40 |
+
|
| 41 |
+
Suppose_literal (the_pair_U_phi_is_a_chart_M, chart. Value(/* truth value */));
|
| 42 |
+
|
| 43 |
+
// like the supposed literal a_topological_space_M, you may introduce a function for each literal below
|
| 44 |
+
Suppose_literal (p_is_element_of_the_pair_U_phi, true);
|
| 45 |
+
Suppose_literal (p_is_element_of_U, true);
|
| 46 |
+
Suppose_literal (for_all_p_for_some_chart, true);
|
| 47 |
+
|
| 48 |
+
Satisfy::Formula remark_2_1 = the_pair_U_phi_is_a_chart_M. And (p_is_element_of_U). Implying (p_is_element_of_the_pair_U_phi);
|
| 49 |
+
|
| 50 |
+
auto third_condition_from_definition_2_1 = for_all_p_there_is_an_open_neighbourhood_U. And (U_is_element_of_M). And (U_is_homeomorphic_to_an_open_subset_V). And (V_is_subset_of_real_coordinate_space_of_dimension_n);
|
| 51 |
+
|
| 52 |
+
Satisfy::Formula rewrite_third_condition_from_definition_2_1 = for_all_p_for_some_chart. Implying (third_condition_from_definition_2_1);
|
| 53 |
|
| 54 |
return 0;
|
| 55 |
}
|