|
|
|
import argparse |
|
import re |
|
from typing import Dict |
|
|
|
import torch |
|
from datasets import Audio, Dataset, load_dataset, load_metric |
|
|
|
from transformers import AutoFeatureExtractor, pipeline, Wav2Vec2ForCTC, Wav2Vec2Processor, set_seed |
|
from pyctcdecode import build_ctcdecoder |
|
from multiprocessing import Pool |
|
|
|
class KenLM: |
|
def __init__(self, tokenizer, model_name, unigrams=None, num_workers=8, beam_width=128): |
|
self.num_workers = num_workers |
|
self.beam_width = beam_width |
|
vocab_dict = tokenizer.get_vocab() |
|
self.vocabulary = [x[0] for x in sorted(vocab_dict.items(), key=lambda x: x[1], reverse=False)] |
|
self.vocabulary = self.vocabulary[:-1] |
|
self.decoder = build_ctcdecoder(self.vocabulary, model_name, unigrams=unigrams) |
|
|
|
@staticmethod |
|
def lm_postprocess(text): |
|
return ' '.join([x if len(x) > 1 else "" for x in text.split()]).strip() |
|
|
|
def decode(self, logits): |
|
probs = logits.cpu().numpy() |
|
|
|
with Pool(self.num_workers) as pool: |
|
text = self.decoder.decode_batch(pool, probs) |
|
text = [KenLM.lm_postprocess(x) for x in text] |
|
return text |
|
|
|
def log_results(result: Dataset, args: Dict[str, str]): |
|
"""DO NOT CHANGE. This function computes and logs the result metrics.""" |
|
|
|
log_outputs = args.log_outputs |
|
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) |
|
|
|
|
|
wer = load_metric("wer") |
|
cer = load_metric("cer") |
|
|
|
|
|
wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) |
|
cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) |
|
|
|
|
|
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" |
|
print(result_str) |
|
|
|
with open(f"{dataset_id}_eval_results.txt", "w") as f: |
|
f.write(result_str) |
|
|
|
|
|
if log_outputs is not None: |
|
pred_file = f"log_{dataset_id}_predictions.txt" |
|
target_file = f"log_{dataset_id}_targets.txt" |
|
|
|
with open(pred_file, "w") as p, open(target_file, "w") as t: |
|
|
|
|
|
def write_to_file(batch, i): |
|
p.write(f"{i}" + "\n") |
|
p.write(batch["prediction"] + "\n") |
|
t.write(f"{i}" + "\n") |
|
t.write(batch["target"] + "\n") |
|
|
|
result.map(write_to_file, with_indices=True) |
|
|
|
|
|
def normalize_text(text: str) -> str: |
|
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" |
|
chars_to_ignore_regex = '[,?.!-;:""%\'"\'\'`…’»«‘“”�éû]' |
|
|
|
text = re.sub(chars_to_ignore_regex, "", text.lower()) |
|
|
|
|
|
|
|
token_sequences_to_ignore = ["\n\n", "\n", " ", " "] |
|
|
|
for t in token_sequences_to_ignore: |
|
text = " ".join(text.split(t)) |
|
|
|
return text |
|
|
|
|
|
def main(args): |
|
|
|
dataset = load_dataset(args.dataset, args.config, data_dir=args.data_dir, split=args.split, use_auth_token=True) |
|
|
|
|
|
|
|
|
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) |
|
sampling_rate = feature_extractor.sampling_rate |
|
|
|
|
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) |
|
|
|
|
|
if args.device is None: |
|
args.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
set_seed(42) |
|
processor = Wav2Vec2Processor.from_pretrained(args.model_id) |
|
model = Wav2Vec2ForCTC.from_pretrained(args.model_id) |
|
model.to(args.device) |
|
kenlm = KenLM(processor.tokenizer, "language_model/5gram.bin", unigrams="language_model/unigrams.txt") |
|
|
|
|
|
def map_to_pred(batch): |
|
inputs = processor(batch["audio"]["array"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to(args.device), attention_mask=inputs.attention_mask.to(args.device)).logits |
|
prediction = kenlm.decode(logits) |
|
|
|
batch["prediction"] = prediction |
|
batch["target"] = normalize_text(batch["sentence"]) |
|
return batch |
|
|
|
|
|
result = dataset.map(map_to_pred, remove_columns=dataset.column_names) |
|
|
|
|
|
|
|
log_results(result, args) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" |
|
) |
|
parser.add_argument( |
|
"--dataset", |
|
type=str, |
|
required=True, |
|
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", |
|
) |
|
parser.add_argument( |
|
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" |
|
) |
|
parser.add_argument("--data_dir", type=str, required=False, default=None, |
|
help="The directory contains the dataset") |
|
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") |
|
parser.add_argument( |
|
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." |
|
) |
|
parser.add_argument( |
|
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." |
|
) |
|
parser.add_argument( |
|
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." |
|
) |
|
parser.add_argument( |
|
"--device", |
|
type=int, |
|
default=None, |
|
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", |
|
) |
|
args = parser.parse_args() |
|
|
|
main(args) |
|
|