wav2vec2-base-turkish / test-vocab.py
cahya's picture
Training in progress, step 500
fcbce2b
raw
history blame
710 Bytes
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "cahya/wav2vec2-base-turkish"
sample_iter = iter(load_dataset("common_voice", "tr", split="test", streaming=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
print(transcription)