groadabike commited on
Commit
3cb030e
1 Parent(s): dead6c7

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +52 -56
README.md CHANGED
@@ -1,61 +1,57 @@
1
  ---
2
- {}
 
 
 
 
 
 
 
 
 
 
3
  ---
4
 
5
- ---
6
- license: apache-2.0
7
- language:
8
- - en
9
- tags:
10
- - hearing loss
11
- - challenge
12
- - signal processing
13
- - source separation
14
- - audio
15
- - audio-to-audio
16
- - NonCausal
17
- ---
18
-
19
- # Cadenza Challenge: CAD2-Task1
20
-
21
- A NonCausal Clarinet/Others separation model for the CAD2-Task2 baseline system.
22
-
23
- * Architecture: ConvTasNet (Kaituo XU) with multichannel support (Alexandre Defossez).
24
- * Parameters:
25
- * B: 256
26
- * C: 2
27
- * H: 512
28
- * L: 20
29
- * N: 256
30
- * P: 3
31
- * R: 3
32
- * X: 8
33
- * audio_channels: 2
34
- * causal: false
35
- * mask_nonlinear: relu
36
- * norm_type: gLN
37
- * training:
38
- * sample_rate: 44100
39
- * samples_per_track: 64
40
- * segment: 5.0
41
- * aggregate: 2
42
- * batch_size: 4
43
- * early_stop: true
44
- * epochs: 200
45
-
46
-
47
- ## Dataset
48
- The model was trained using EnsembleSet and CadenzaWoodwind datasets.
49
-
50
- ## How to use
51
-
52
- ```
53
- from tasnet import ConvTasNetStereo
54
-
55
- model = ConvTasNetStereo.from_pretrained(
56
- "cadenzachallenge/ConvTasNet_Clarinet_NonCausal"
57
- ).cpu()
58
-
59
- ```
60
 
61
 
 
1
  ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - hearing loss
7
+ - challenge
8
+ - signal processing
9
+ - source separation
10
+ - audio
11
+ - audio-to-audio
12
+ - NonCausal
13
  ---
14
 
15
+ # Cadenza Challenge: CAD2-Task1
16
+
17
+ A NonCausal Clarinet/Others separation model for the CAD2-Task2 baseline system.
18
+
19
+ * Architecture: ConvTasNet (Kaituo XU) with multichannel support (Alexandre Defossez).
20
+ * Parameters:
21
+ * B: 256
22
+ * C: 2
23
+ * H: 512
24
+ * L: 20
25
+ * N: 256
26
+ * P: 3
27
+ * R: 3
28
+ * X: 8
29
+ * audio_channels: 2
30
+ * causal: false
31
+ * mask_nonlinear: relu
32
+ * norm_type: gLN
33
+ * training:
34
+ * sample_rate: 44100
35
+ * samples_per_track: 64
36
+ * segment: 5.0
37
+ * aggregate: 2
38
+ * batch_size: 4
39
+ * early_stop: true
40
+ * epochs: 200
41
+
42
+
43
+ ## Dataset
44
+ The model was trained using EnsembleSet and CadenzaWoodwind datasets.
45
+
46
+ ## How to use
47
+
48
+ ```
49
+ from tasnet import ConvTasNetStereo
50
+
51
+ model = ConvTasNetStereo.from_pretrained(
52
+ "cadenzachallenge/ConvTasNet_Clarinet_NonCausal"
53
+ ).cpu()
54
+
55
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57