Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.25 +/- 0.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a4363d2ed6b61803931f37c396aef818ff7c1cbf5509b70d0eb22869f336f18
|
3 |
+
size 106832
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7dd377de1bd0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7dd377ddd9c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1696423815262008244,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAB6aMv9xMoz+LkBM/XxjxPPq+Hj08e84+0ACKv2Tvlb+AjD+/YZ12vtFpoj92rWQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA16KGv1ROrT9otmY/Q+V6PwnGwr9iXoi/+i6EvwYMhL/u5xO+9jhrPlMevz+cdWo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAHpoy/3EyjP4uQEz94x3C/qZmJPyVTxT9fGPE8+r4ePTx7zj60R9Q+kMETu+VDrT7QAIq/ZO+Vv4CMP7+KioW/0iBuv05Pdr5hnXa+0WmiP3atZD9QSZq/yByMP7uHoD+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-1.0988168 1.2757831 0.5764243 ]\n [ 0.02943057 0.03875635 0.40328395]\n [-1.0781498 -1.1713681 -0.7482376 ]\n [-0.24083473 1.2688543 0.8932718 ]]",
|
34 |
+
"desired_goal": "[[-1.0518445 1.3539529 0.9012208 ]\n [ 0.98006076 -1.5216686 -1.0653803 ]\n [-1.0326836 -1.0316169 -0.14443943]\n [ 0.22970948 1.4931129 0.9158571 ]]",
|
35 |
+
"observation": "[[-1.0988168 1.2757831 0.5764243 -0.94054365 1.0750018 1.5415999 ]\n [ 0.02943057 0.03875635 0.40328395 0.41460955 -0.00225458 0.33840862]\n [-1.0781498 -1.1713681 -0.7482376 -1.0432904 -0.9301883 -0.2405369 ]\n [-0.24083473 1.2688543 0.8932718 -1.2053623 1.0946283 1.2541422 ]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxWgRvQVqqr27FFQ+9ywevVXDqj0DWsA9+eHGPPGfgj08wTE+8xiVvSeuvT2zLtA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.03550031 -0.08321003 0.20711033]\n [-0.0386171 0.08338038 0.09392168]\n [ 0.02427767 0.06378163 0.1735887 ]\n [-0.07280149 0.09261733 0.10165157]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9GqEOAiFCeMAWyUSwOMAXSUR0CkaVUHIIWydX2UKGgGR7/YQ+lj3EhraAdLBGgIR0Ckae5Gz8gqdX2UKGgGR7/BtP557gKnaAdLAmgIR0Ckai+SB9ThdX2UKGgGR7+3rMTviLl4aAdLAmgIR0CkaV2Jzkp7dX2UKGgGR7/ShlDneSB9aAdLA2gIR0Ckabik43m3dX2UKGgGR7/IXBP9DQZ5aAdLA2gIR0Ckafpqh11XdX2UKGgGR7+owZflZHNHaAdLAWgIR0Ckaby31BdEdX2UKGgGR7/JoexOclPaaAdLA2gIR0Ckaj3ztkWidX2UKGgGR7/QfrrxAjY7aAdLA2gIR0CkaWvmxMWXdX2UKGgGR7/AsXizcAR1aAdLAmgIR0Ckakc+JP69dX2UKGgGR7/P/kNnXd0raAdLA2gIR0CkagoXj2i+dX2UKGgGR7/LhddE9dNWaAdLA2gIR0CkacyQYDT0dX2UKGgGR7+7ZuhsZYPoaAdLAmgIR0CkahIkiUxEdX2UKGgGR7+/En9ehPCVaAdLAmgIR0CkadR4ptrLdX2UKGgGR7/XPwNLDhtMaAdLBGgIR0CkaX2CNCJGdX2UKGgGR7/NdAPd2xIKaAdLA2gIR0CkalXaSLZSdX2UKGgGR7/BpSrHU+cIaAdLAmgIR0CkahyzPa+OdX2UKGgGR7/Rk7OmixmkaAdLA2gIR0CkaeQaisXBdX2UKGgGR7/FuAI6bONYaAdLA2gIR0CkaY0+cH4XdX2UKGgGR7/Hiy6cy31BaAdLA2gIR0CkamOVPepGdX2UKGgGR7+gplSS/0ulaAdLAWgIR0CkamebNKRMdX2UKGgGR7/EHu7YkE9uaAdLAmgIR0Ckae0UoKD1dX2UKGgGR7/UpyIYWLxaaAdLBGgIR0CkajEvCdjHdX2UKGgGR7/RwztTkyULaAdLA2gIR0CkaZzFdcB2dX2UKGgGR7+/noxHoX9BaAdLAmgIR0CkanMx46fbdX2UKGgGR7/Otp22Xsw+aAdLA2gIR0CkafzQ/oq1dX2UKGgGR7/GJ40Mw1ziaAdLA2gIR0CkakDz7MxHdX2UKGgGR7/IAPNFBppOaAdLA2gIR0Ckaa1j7Q9idX2UKGgGR7/NKzzErGzbaAdLA2gIR0CkaoRcE/0NdX2UKGgGR7+2NfgJkXk6aAdLAmgIR0CkagmG/N7jdX2UKGgGR7/CIznA6+36aAdLAmgIR0CkablRP421dX2UKGgGR7/CWBz3h4t6aAdLAmgIR0Ckao+hwl0HdX2UKGgGR7/JxjriVB2PaAdLA2gIR0CkalKHoHLSdX2UKGgGR7/dJd0JWvKVaAdLBGgIR0CkahzHbRF7dX2UKGgGR7/RknTiKiwjaAdLA2gIR0CkacXYUWVNdX2UKGgGR7/TuRLbpNbkaAdLA2gIR0CkapwkPczqdX2UKGgGR7/HJ2+wkgOjaAdLA2gIR0Ckal8lXzUadX2UKGgGR7/GYGdI5HVgaAdLAmgIR0CkadCZF5OadX2UKGgGR7+8C8vmHP/raAdLAmgIR0Ckaqbrs0HhdX2UKGgGR7/RdkauOjqOaAdLA2gIR0CkaivluFYddX2UKGgGR7+8L8aXKKYRaAdLAmgIR0Ckadk0aZQYdX2UKGgGR7/P8VHnU2DQaAdLBGgIR0CkanI3irDJdX2UKGgGR7/E9dNWU8msaAdLAmgIR0CkajSJj2BbdX2UKGgGR7/aONYKYzBRaAdLBGgIR0CkaroAwPAgdX2UKGgGR7/LNOdoWYWtaAdLA2gIR0CkaegPd2xIdX2UKGgGR7/PHSWqtHQQaAdLA2gIR0CkakMUZeiSdX2UKGgGR7++LEUCaJAMaAdLAmgIR0CkasIvBacJdX2UKGgGR7/XZ0Syt3fRaAdLBGgIR0CkaoUBXCCSdX2UKGgGR7/JX1anrIHUaAdLA2gIR0CkafQFTvRadX2UKGgGR7+2hh6Skj5caAdLAmgIR0CkaspGnXNDdX2UKGgGR7/Hddmg8KXwaAdLA2gIR0Ckak9KNAC5dX2UKGgGR7+1oN/e+Eh8aAdLAmgIR0Ckaf6aTfSAdX2UKGgGR7/bKLbYbsF/aAdLBGgIR0CkapeA3DNydX2UKGgGR7/NNIsiB5HFaAdLA2gIR0Ckatm+9Jz1dX2UKGgGR7/fLgn+hoM8aAdLBGgIR0CkamTMqz7edX2UKGgGR7+9X/5tWMjvaAdLAmgIR0CkauP91loUdX2UKGgGR7/VOObRWtEHaAdLA2gIR0CkaqbeVLSNdX2UKGgGR7/dusLfDUExaAdLBWgIR0Ckahg9/z8QdX2UKGgGR7+6V6eGwiaBaAdLAmgIR0Ckau6Eal1sdX2UKGgGR7/DEDQqqfe2aAdLAmgIR0CkarFhG6PKdX2UKGgGR7/Qcqe9SMtLaAdLA2gIR0CkanPbfxc3dX2UKGgGR7+zEUCaJAMVaAdLAmgIR0CkarmAskIHdX2UKGgGR7/P3XZoPCl8aAdLA2gIR0CkaiSzPa+OdX2UKGgGR7/RBNmDlHSXaAdLA2gIR0CkavsCtA9ndX2UKGgGR7/HES/TLGJfaAdLA2gIR0Ckan/oaDPGdX2UKGgGR7/OuyNXHR1HaAdLA2gIR0Ckaser+5vtdX2UKGgGR7/MAPNFBppOaAdLA2gIR0Ckawk61b7kdX2UKGgGR7/Lj5sTFl06aAdLA2gIR0Ckao894eLfdX2UKGgGR7/a4wRGtp22aAdLBGgIR0CkajhY3eendX2UKGgGR7/D99+gDifhaAdLAmgIR0CkatEoF3Y+dX2UKGgGR7+7hZQpF1B/aAdLAmgIR0CkaxJu/DcedX2UKGgGR7/LGNJe3QUpaAdLA2gIR0CkakY0/GEPdX2UKGgGR7+91KXfIjnnaAdLAmgIR0Ckaxxk3CKrdX2UKGgGR7/Od2gWac7RaAdLA2gIR0Ckat8n3L3cdX2UKGgGR7/cWFev6j33aAdLBGgIR0CkaqGZmZmadX2UKGgGR7/AJrLyMDOkaAdLAmgIR0Ckaqkiliz+dX2UKGgGR7/Fyd4FA3UAaAdLA2gIR0CkalIwmE5AdX2UKGgGR7/SBKtga3qiaAdLA2gIR0CkayhjWkJsdX2UKGgGR7/TPwuuieunaAdLA2gIR0Ckauuby6MBdX2UKGgGR7/HyiEg4ffXaAdLA2gIR0CkazaDXe3ydX2UKGgGR7/EBH09QoCuaAdLA2gIR0CkavlwLmZFdX2UKGgGR7/c2AXl8w6AaAdLBGgIR0Ckaru5SWJKdX2UKGgGR7/Pfl6qsEJTaAdLBGgIR0CkamSro4dZdX2UKGgGR7/FQIldC3PSaAdLAmgIR0CkamxaouPFdX2UKGgGR7/MgzP8hs68aAdLA2gIR0Cka0TzundgdX2UKGgGR7/IoGY8dPtVaAdLA2gIR0CkawfOD8LsdX2UKGgGR7/ZOu7pV0cPaAdLBGgIR0Ckas4W1twadX2UKGgGR7/Fd3Sro4dZaAdLAmgIR0Cka0021lXjdX2UKGgGR7+5TLns9jgAaAdLAmgIR0CkaxAhStNjdX2UKGgGR7+1nL7oB7u2aAdLAmgIR0CkatY9X9zfdX2UKGgGR7/QlRP420iRaAdLBWgIR0CkaoNRFZxJdX2UKGgGR7/TELH+6y0KaAdLA2gIR0Cka1vy08eTdX2UKGgGR7/SocaOxSpBaAdLA2gIR0Ckax7ypaRqdX2UKGgGR7+zTlT3qRlpaAdLAmgIR0CkauFqrR0EdX2UKGgGR7+aef7JnxrjaAdLAWgIR0CkaoqgRK6GdX2UKGgGR7+3O2RaHKwIaAdLAmgIR0Cka2S/bj95dX2UKGgGR7+0nhKlHjIaaAdLAmgIR0CkaumvW6K+dX2UKGgGR7/CYKIBRyfdaAdLAmgIR0CkapK9XcQAdX2UKGgGR7/C8ujASFoMaAdLA2gIR0CkayvIfbKzdX2UKGgGR7+jAUL2HtWuaAdLAWgIR0Ckay+6y0KJdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96dd9d6933762eb7f0151a497efe15433d8d0ffc6408031b18766cca71e86436
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:217789fb0f9b5d25cbf936c8191afbff51fbbfb616d7a10d2abd578d4f76b7f6
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7dd377de1bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd377ddd9c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696423815262008244, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAB6aMv9xMoz+LkBM/XxjxPPq+Hj08e84+0ACKv2Tvlb+AjD+/YZ12vtFpoj92rWQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA16KGv1ROrT9otmY/Q+V6PwnGwr9iXoi/+i6EvwYMhL/u5xO+9jhrPlMevz+cdWo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAHpoy/3EyjP4uQEz94x3C/qZmJPyVTxT9fGPE8+r4ePTx7zj60R9Q+kMETu+VDrT7QAIq/ZO+Vv4CMP7+KioW/0iBuv05Pdr5hnXa+0WmiP3atZD9QSZq/yByMP7uHoD+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.0988168 1.2757831 0.5764243 ]\n [ 0.02943057 0.03875635 0.40328395]\n [-1.0781498 -1.1713681 -0.7482376 ]\n [-0.24083473 1.2688543 0.8932718 ]]", "desired_goal": "[[-1.0518445 1.3539529 0.9012208 ]\n [ 0.98006076 -1.5216686 -1.0653803 ]\n [-1.0326836 -1.0316169 -0.14443943]\n [ 0.22970948 1.4931129 0.9158571 ]]", "observation": "[[-1.0988168 1.2757831 0.5764243 -0.94054365 1.0750018 1.5415999 ]\n [ 0.02943057 0.03875635 0.40328395 0.41460955 -0.00225458 0.33840862]\n [-1.0781498 -1.1713681 -0.7482376 -1.0432904 -0.9301883 -0.2405369 ]\n [-0.24083473 1.2688543 0.8932718 -1.2053623 1.0946283 1.2541422 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxWgRvQVqqr27FFQ+9ywevVXDqj0DWsA9+eHGPPGfgj08wTE+8xiVvSeuvT2zLtA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03550031 -0.08321003 0.20711033]\n [-0.0386171 0.08338038 0.09392168]\n [ 0.02427767 0.06378163 0.1735887 ]\n [-0.07280149 0.09261733 0.10165157]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9GqEOAiFCeMAWyUSwOMAXSUR0CkaVUHIIWydX2UKGgGR7/YQ+lj3EhraAdLBGgIR0Ckae5Gz8gqdX2UKGgGR7/BtP557gKnaAdLAmgIR0Ckai+SB9ThdX2UKGgGR7+3rMTviLl4aAdLAmgIR0CkaV2Jzkp7dX2UKGgGR7/ShlDneSB9aAdLA2gIR0Ckabik43m3dX2UKGgGR7/IXBP9DQZ5aAdLA2gIR0Ckafpqh11XdX2UKGgGR7+owZflZHNHaAdLAWgIR0Ckaby31BdEdX2UKGgGR7/JoexOclPaaAdLA2gIR0Ckaj3ztkWidX2UKGgGR7/QfrrxAjY7aAdLA2gIR0CkaWvmxMWXdX2UKGgGR7/AsXizcAR1aAdLAmgIR0Ckakc+JP69dX2UKGgGR7/P/kNnXd0raAdLA2gIR0CkagoXj2i+dX2UKGgGR7/LhddE9dNWaAdLA2gIR0CkacyQYDT0dX2UKGgGR7+7ZuhsZYPoaAdLAmgIR0CkahIkiUxEdX2UKGgGR7+/En9ehPCVaAdLAmgIR0CkadR4ptrLdX2UKGgGR7/XPwNLDhtMaAdLBGgIR0CkaX2CNCJGdX2UKGgGR7/NdAPd2xIKaAdLA2gIR0CkalXaSLZSdX2UKGgGR7/BpSrHU+cIaAdLAmgIR0CkahyzPa+OdX2UKGgGR7/Rk7OmixmkaAdLA2gIR0CkaeQaisXBdX2UKGgGR7/FuAI6bONYaAdLA2gIR0CkaY0+cH4XdX2UKGgGR7/Hiy6cy31BaAdLA2gIR0CkamOVPepGdX2UKGgGR7+gplSS/0ulaAdLAWgIR0CkamebNKRMdX2UKGgGR7/EHu7YkE9uaAdLAmgIR0Ckae0UoKD1dX2UKGgGR7/UpyIYWLxaaAdLBGgIR0CkajEvCdjHdX2UKGgGR7/RwztTkyULaAdLA2gIR0CkaZzFdcB2dX2UKGgGR7+/noxHoX9BaAdLAmgIR0CkanMx46fbdX2UKGgGR7/Otp22Xsw+aAdLA2gIR0CkafzQ/oq1dX2UKGgGR7/GJ40Mw1ziaAdLA2gIR0CkakDz7MxHdX2UKGgGR7/IAPNFBppOaAdLA2gIR0Ckaa1j7Q9idX2UKGgGR7/NKzzErGzbaAdLA2gIR0CkaoRcE/0NdX2UKGgGR7+2NfgJkXk6aAdLAmgIR0CkagmG/N7jdX2UKGgGR7/CIznA6+36aAdLAmgIR0CkablRP421dX2UKGgGR7/CWBz3h4t6aAdLAmgIR0Ckao+hwl0HdX2UKGgGR7/JxjriVB2PaAdLA2gIR0CkalKHoHLSdX2UKGgGR7/dJd0JWvKVaAdLBGgIR0CkahzHbRF7dX2UKGgGR7/RknTiKiwjaAdLA2gIR0CkacXYUWVNdX2UKGgGR7/TuRLbpNbkaAdLA2gIR0CkapwkPczqdX2UKGgGR7/HJ2+wkgOjaAdLA2gIR0Ckal8lXzUadX2UKGgGR7/GYGdI5HVgaAdLAmgIR0CkadCZF5OadX2UKGgGR7+8C8vmHP/raAdLAmgIR0Ckaqbrs0HhdX2UKGgGR7/RdkauOjqOaAdLA2gIR0CkaivluFYddX2UKGgGR7+8L8aXKKYRaAdLAmgIR0Ckadk0aZQYdX2UKGgGR7/P8VHnU2DQaAdLBGgIR0CkanI3irDJdX2UKGgGR7/E9dNWU8msaAdLAmgIR0CkajSJj2BbdX2UKGgGR7/aONYKYzBRaAdLBGgIR0CkaroAwPAgdX2UKGgGR7/LNOdoWYWtaAdLA2gIR0CkaegPd2xIdX2UKGgGR7/PHSWqtHQQaAdLA2gIR0CkakMUZeiSdX2UKGgGR7++LEUCaJAMaAdLAmgIR0CkasIvBacJdX2UKGgGR7/XZ0Syt3fRaAdLBGgIR0CkaoUBXCCSdX2UKGgGR7/JX1anrIHUaAdLA2gIR0CkafQFTvRadX2UKGgGR7+2hh6Skj5caAdLAmgIR0CkaspGnXNDdX2UKGgGR7/Hddmg8KXwaAdLA2gIR0Ckak9KNAC5dX2UKGgGR7+1oN/e+Eh8aAdLAmgIR0Ckaf6aTfSAdX2UKGgGR7/bKLbYbsF/aAdLBGgIR0CkapeA3DNydX2UKGgGR7/NNIsiB5HFaAdLA2gIR0Ckatm+9Jz1dX2UKGgGR7/fLgn+hoM8aAdLBGgIR0CkamTMqz7edX2UKGgGR7+9X/5tWMjvaAdLAmgIR0CkauP91loUdX2UKGgGR7/VOObRWtEHaAdLA2gIR0CkaqbeVLSNdX2UKGgGR7/dusLfDUExaAdLBWgIR0Ckahg9/z8QdX2UKGgGR7+6V6eGwiaBaAdLAmgIR0Ckau6Eal1sdX2UKGgGR7/DEDQqqfe2aAdLAmgIR0CkarFhG6PKdX2UKGgGR7/Qcqe9SMtLaAdLA2gIR0CkanPbfxc3dX2UKGgGR7+zEUCaJAMVaAdLAmgIR0CkarmAskIHdX2UKGgGR7/P3XZoPCl8aAdLA2gIR0CkaiSzPa+OdX2UKGgGR7/RBNmDlHSXaAdLA2gIR0CkavsCtA9ndX2UKGgGR7/HES/TLGJfaAdLA2gIR0Ckan/oaDPGdX2UKGgGR7/OuyNXHR1HaAdLA2gIR0Ckaser+5vtdX2UKGgGR7/MAPNFBppOaAdLA2gIR0Ckawk61b7kdX2UKGgGR7/Lj5sTFl06aAdLA2gIR0Ckao894eLfdX2UKGgGR7/a4wRGtp22aAdLBGgIR0CkajhY3eendX2UKGgGR7/D99+gDifhaAdLAmgIR0CkatEoF3Y+dX2UKGgGR7+7hZQpF1B/aAdLAmgIR0CkaxJu/DcedX2UKGgGR7/LGNJe3QUpaAdLA2gIR0CkakY0/GEPdX2UKGgGR7+91KXfIjnnaAdLAmgIR0Ckaxxk3CKrdX2UKGgGR7/Od2gWac7RaAdLA2gIR0Ckat8n3L3cdX2UKGgGR7/cWFev6j33aAdLBGgIR0CkaqGZmZmadX2UKGgGR7/AJrLyMDOkaAdLAmgIR0Ckaqkiliz+dX2UKGgGR7/Fyd4FA3UAaAdLA2gIR0CkalIwmE5AdX2UKGgGR7/SBKtga3qiaAdLA2gIR0CkayhjWkJsdX2UKGgGR7/TPwuuieunaAdLA2gIR0Ckauuby6MBdX2UKGgGR7/HyiEg4ffXaAdLA2gIR0CkazaDXe3ydX2UKGgGR7/EBH09QoCuaAdLA2gIR0CkavlwLmZFdX2UKGgGR7/c2AXl8w6AaAdLBGgIR0Ckaru5SWJKdX2UKGgGR7/Pfl6qsEJTaAdLBGgIR0CkamSro4dZdX2UKGgGR7/FQIldC3PSaAdLAmgIR0CkamxaouPFdX2UKGgGR7/MgzP8hs68aAdLA2gIR0Cka0TzundgdX2UKGgGR7/IoGY8dPtVaAdLA2gIR0CkawfOD8LsdX2UKGgGR7/ZOu7pV0cPaAdLBGgIR0Ckas4W1twadX2UKGgGR7/Fd3Sro4dZaAdLAmgIR0Cka0021lXjdX2UKGgGR7+5TLns9jgAaAdLAmgIR0CkaxAhStNjdX2UKGgGR7+1nL7oB7u2aAdLAmgIR0CkatY9X9zfdX2UKGgGR7/QlRP420iRaAdLBWgIR0CkaoNRFZxJdX2UKGgGR7/TELH+6y0KaAdLA2gIR0Cka1vy08eTdX2UKGgGR7/SocaOxSpBaAdLA2gIR0Ckax7ypaRqdX2UKGgGR7+zTlT3qRlpaAdLAmgIR0CkauFqrR0EdX2UKGgGR7+aef7JnxrjaAdLAWgIR0CkaoqgRK6GdX2UKGgGR7+3O2RaHKwIaAdLAmgIR0Cka2S/bj95dX2UKGgGR7+0nhKlHjIaaAdLAmgIR0CkaumvW6K+dX2UKGgGR7/CYKIBRyfdaAdLAmgIR0CkapK9XcQAdX2UKGgGR7/C8ujASFoMaAdLA2gIR0CkayvIfbKzdX2UKGgGR7+jAUL2HtWuaAdLAWgIR0Ckay+6y0KJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (678 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.2543758338317275, "std_reward": 0.1112590443475646, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-04T13:34:41.651970"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6ee60375c69026e2e7a16aaf1a30fb2a16f93a826ea234b4e492874bbf649d6
|
3 |
+
size 2636
|