QwenTest
/
pythonProject
/diffusers-main
/src
/diffusers
/pipelines
/chroma
/pipeline_chroma_img2img.py
| # Copyright 2025 Black Forest Labs and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, T5TokenizerFast | |
| from ...image_processor import PipelineImageInput, VaeImageProcessor | |
| from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin | |
| from ...models import AutoencoderKL, ChromaTransformer2DModel | |
| from ...schedulers import FlowMatchEulerDiscreteScheduler | |
| from ...utils import ( | |
| USE_PEFT_BACKEND, | |
| is_torch_xla_available, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline | |
| from .pipeline_output import ChromaPipelineOutput | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import ChromaTransformer2DModel, ChromaImg2ImgPipeline | |
| >>> model_id = "lodestones/Chroma" | |
| >>> ckpt_path = "https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v37.safetensors" | |
| >>> pipe = ChromaImg2ImgPipeline.from_pretrained( | |
| ... model_id, | |
| ... transformer=transformer, | |
| ... torch_dtype=torch.bfloat16, | |
| ... ) | |
| >>> pipe.enable_model_cpu_offload() | |
| >>> init_image = load_image( | |
| ... "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" | |
| ... ) | |
| >>> prompt = "a scenic fastasy landscape with a river and mountains in the background, vibrant colors, detailed, high resolution" | |
| >>> negative_prompt = "low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors" | |
| >>> image = pipe(prompt, image=init_image, negative_prompt=negative_prompt).images[0] | |
| >>> image.save("chroma-img2img.png") | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift | |
| def calculate_shift( | |
| image_seq_len, | |
| base_seq_len: int = 256, | |
| max_seq_len: int = 4096, | |
| base_shift: float = 0.5, | |
| max_shift: float = 1.15, | |
| ): | |
| m = (max_shift - base_shift) / (max_seq_len - base_seq_len) | |
| b = base_shift - m * base_seq_len | |
| mu = image_seq_len * m + b | |
| return mu | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class ChromaImg2ImgPipeline( | |
| DiffusionPipeline, | |
| FluxLoraLoaderMixin, | |
| FromSingleFileMixin, | |
| TextualInversionLoaderMixin, | |
| FluxIPAdapterMixin, | |
| ): | |
| r""" | |
| The Chroma pipeline for image-to-image generation. | |
| Reference: https://huggingface.co/lodestones/Chroma/ | |
| Args: | |
| transformer ([`ChromaTransformer2DModel`]): | |
| Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representation | |
| text_encoder ([`T5EncoderModel`]): | |
| [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically | |
| the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
| tokenizer (`T5TokenizerFast`): | |
| Second Tokenizer of class | |
| [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). | |
| """ | |
| model_cpu_offload_seq = "text_encoder->image_encoder->transformer->vae" | |
| _optional_components = ["image_encoder", "feature_extractor"] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds"] | |
| def __init__( | |
| self, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| text_encoder: T5EncoderModel, | |
| tokenizer: T5TokenizerFast, | |
| transformer: ChromaTransformer2DModel, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| feature_extractor: CLIPImageProcessor = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
| self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16 | |
| # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible | |
| # by the patch size. So the vae scale factor is multiplied by the patch size to account for this | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) | |
| self.default_sample_size = 128 | |
| def _get_t5_prompt_embeds( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_images_per_prompt: int = 1, | |
| max_sequence_length: int = 512, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| device = device or self._execution_device | |
| dtype = dtype or self.text_encoder.dtype | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| batch_size = len(prompt) | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_length=False, | |
| return_overflowing_tokens=False, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| attention_mask = text_inputs.attention_mask.clone() | |
| # Chroma requires the attention mask to include one padding token | |
| seq_lengths = attention_mask.sum(dim=1) | |
| mask_indices = torch.arange(attention_mask.size(1)).unsqueeze(0).expand(batch_size, -1) | |
| attention_mask = (mask_indices <= seq_lengths.unsqueeze(1)).long() | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), output_hidden_states=False, attention_mask=attention_mask.to(device) | |
| )[0] | |
| dtype = self.text_encoder.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| attention_mask = attention_mask.to(dtype=dtype, device=device) | |
| _, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| attention_mask = attention_mask.repeat(1, num_images_per_prompt) | |
| attention_mask = attention_mask.view(batch_size * num_images_per_prompt, seq_len) | |
| return prompt_embeds, attention_mask | |
| # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
| image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| return image_latents | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| negative_prompt: Union[str, List[str]] = None, | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| do_classifier_free_guidance: bool = True, | |
| max_sequence_length: int = 512, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| r""" | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` | |
| instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None and USE_PEFT_BACKEND: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt is not None: | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds( | |
| prompt=prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype | |
| text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | |
| negative_text_ids = None | |
| if do_classifier_free_guidance: | |
| if negative_prompt_embeds is None: | |
| negative_prompt = negative_prompt or "" | |
| negative_prompt = ( | |
| batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
| ) | |
| if prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds( | |
| prompt=negative_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| negative_text_ids = torch.zeros(negative_prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) | |
| if self.text_encoder is not None: | |
| if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| return ( | |
| prompt_embeds, | |
| text_ids, | |
| prompt_attention_mask, | |
| negative_prompt_embeds, | |
| negative_text_ids, | |
| negative_prompt_attention_mask, | |
| ) | |
| # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image | |
| def encode_image(self, image, device, num_images_per_prompt): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| return image_embeds | |
| def prepare_ip_adapter_image_embeds( | |
| self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt | |
| ): | |
| device = device or self._execution_device | |
| image_embeds = [] | |
| if ip_adapter_image_embeds is None: | |
| if not isinstance(ip_adapter_image, list): | |
| ip_adapter_image = [ip_adapter_image] | |
| if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters: | |
| raise ValueError( | |
| f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters." | |
| ) | |
| for single_ip_adapter_image in ip_adapter_image: | |
| single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1) | |
| image_embeds.append(single_image_embeds[None, :]) | |
| else: | |
| if not isinstance(ip_adapter_image_embeds, list): | |
| ip_adapter_image_embeds = [ip_adapter_image_embeds] | |
| if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters: | |
| raise ValueError( | |
| f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters." | |
| ) | |
| for single_image_embeds in ip_adapter_image_embeds: | |
| image_embeds.append(single_image_embeds) | |
| ip_adapter_image_embeds = [] | |
| for single_image_embeds in image_embeds: | |
| single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) | |
| single_image_embeds = single_image_embeds.to(device=device) | |
| ip_adapter_image_embeds.append(single_image_embeds) | |
| return ip_adapter_image_embeds | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| strength, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| prompt_attention_mask=None, | |
| negative_prompt_attention_mask=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| max_sequence_length=None, | |
| ): | |
| if strength < 0 or strength > 1: | |
| raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | |
| if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: | |
| logger.warning( | |
| f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and prompt_attention_mask is None: | |
| raise ValueError("Cannot provide `prompt_embeds` without also providing `prompt_attention_mask") | |
| if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: | |
| raise ValueError( | |
| "Cannot provide `negative_prompt_embeds` without also providing `negative_prompt_attention_mask" | |
| ) | |
| if max_sequence_length is not None and max_sequence_length > 512: | |
| raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") | |
| def _prepare_latent_image_ids(height, width, device, dtype): | |
| latent_image_ids = torch.zeros(height, width, 3) | |
| latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None] | |
| latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :] | |
| latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
| latent_image_ids = latent_image_ids.reshape( | |
| latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
| ) | |
| return latent_image_ids.to(device=device, dtype=dtype) | |
| def _pack_latents(latents, batch_size, num_channels_latents, height, width): | |
| latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) | |
| latents = latents.permute(0, 2, 4, 1, 3, 5) | |
| latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) | |
| return latents | |
| def _unpack_latents(latents, height, width, vae_scale_factor): | |
| batch_size, num_patches, channels = latents.shape | |
| # VAE applies 8x compression on images but we must also account for packing which requires | |
| # latent height and width to be divisible by 2. | |
| height = 2 * (int(height) // (vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (vae_scale_factor * 2)) | |
| latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2) | |
| latents = latents.permute(0, 3, 1, 4, 2, 5) | |
| latents = latents.reshape(batch_size, channels // (2 * 2), height, width) | |
| return latents | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps | |
| def get_timesteps(self, num_inference_steps, strength, device): | |
| # get the original timestep using init_timestep | |
| init_timestep = min(num_inference_steps * strength, num_inference_steps) | |
| t_start = int(max(num_inference_steps - init_timestep, 0)) | |
| timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
| if hasattr(self.scheduler, "set_begin_index"): | |
| self.scheduler.set_begin_index(t_start * self.scheduler.order) | |
| return timesteps, num_inference_steps - t_start | |
| def prepare_latents( | |
| self, | |
| image, | |
| timestep, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| # VAE applies 8x compression on images but we must also account for packing which requires | |
| # latent height and width to be divisible by 2. | |
| height = 2 * (int(height) // (self.vae_scale_factor * 2)) | |
| width = 2 * (int(width) // (self.vae_scale_factor * 2)) | |
| shape = (batch_size, num_channels_latents, height, width) | |
| latent_image_ids = self._prepare_latent_image_ids(height // 2, width // 2, device, dtype) | |
| if latents is not None: | |
| return latents.to(device=device, dtype=dtype), latent_image_ids | |
| image = image.to(device=device, dtype=dtype) | |
| if image.shape[1] != self.latent_channels: | |
| image_latents = self._encode_vae_image(image=image, generator=generator) | |
| else: | |
| image_latents = image | |
| if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // image_latents.shape[0] | |
| image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| image_latents = torch.cat([image_latents], dim=0) | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = self.scheduler.scale_noise(image_latents, timestep, noise) | |
| latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
| return latents, latent_image_ids | |
| def _prepare_attention_mask( | |
| self, | |
| batch_size, | |
| sequence_length, | |
| dtype, | |
| attention_mask=None, | |
| ): | |
| if attention_mask is None: | |
| return attention_mask | |
| # Extend the prompt attention mask to account for image tokens in the final sequence | |
| attention_mask = torch.cat( | |
| [attention_mask, torch.ones(batch_size, sequence_length, device=attention_mask.device)], | |
| dim=1, | |
| ) | |
| attention_mask = attention_mask.to(dtype) | |
| return attention_mask | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def joint_attention_kwargs(self): | |
| return self._joint_attention_kwargs | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def current_timestep(self): | |
| return self._current_timestep | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| image: PipelineImageInput = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 35, | |
| sigmas: Optional[List[float]] = None, | |
| guidance_scale: float = 5.0, | |
| strength: float = 0.9, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_ip_adapter_image: Optional[PipelineImageInput] = None, | |
| negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| not greater than `1`). | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| num_inference_steps (`int`, *optional*, defaults to 35): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
| their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
| will be used. | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| Embedded guiddance scale is enabled by setting `guidance_scale` > 1. Higher `guidance_scale` encourages | |
| a model to generate images more aligned with `prompt` at the expense of lower image quality. | |
| Guidance-distilled models approximates true classifer-free guidance for `guidance_scale` > 1. Refer to | |
| the [paper](https://huggingface.co/papers/2210.03142) to learn more. | |
| strength (`float, *optional*, defaults to 0.9): | |
| Conceptually, indicates how much to transform the reference image. Must be between 0 and 1. image will | |
| be used as a starting point, adding more noise to it the larger the strength. The number of denoising | |
| steps depends on the amount of noise initially added. When strength is 1, added noise will be maximum | |
| and the denoising process will run for the full number of iterations specified in num_inference_steps. | |
| A value of 1, therefore, essentially ignores image. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will be generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
| ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
| Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
| IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not | |
| provided, embeddings are computed from the `ip_adapter_image` input argument. | |
| negative_ip_adapter_image: | |
| (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
| negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
| Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
| IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not | |
| provided, embeddings are computed from the `ip_adapter_image` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| prompt_attention_mask (torch.Tensor, *optional*): | |
| Attention mask for the prompt embeddings. Used to mask out padding tokens in the prompt sequence. | |
| Chroma requires a single padding token remain unmasked. Please refer to | |
| https://huggingface.co/lodestones/Chroma#tldr-masking-t5-padding-tokens-enhanced-fidelity-and-increased-stability-during-training | |
| negative_prompt_attention_mask (torch.Tensor, *optional*): | |
| Attention mask for the negative prompt embeddings. Used to mask out padding tokens in the negative | |
| prompt sequence. Chroma requires a single padding token remain unmasked. PLease refer to | |
| https://huggingface.co/lodestones/Chroma#tldr-masking-t5-padding-tokens-enhanced-fidelity-and-increased-stability-during-training | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.flux.ChromaPipelineOutput`] instead of a plain tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.chroma.ChromaPipelineOutput`] or `tuple`: [`~pipelines.chroma.ChromaPipelineOutput`] if | |
| `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the | |
| generated images. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| strength, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._current_timestep = None | |
| self._interrupt = False | |
| # 2. Preprocess image | |
| init_image = self.image_processor.preprocess(image, height=height, width=width) | |
| init_image = init_image.to(dtype=torch.float32) | |
| # 3. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| text_ids, | |
| prompt_attention_mask, | |
| negative_prompt_embeds, | |
| negative_text_ids, | |
| negative_prompt_attention_mask, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 4. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
| image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2) | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.get("base_image_seq_len", 256), | |
| self.scheduler.config.get("max_image_seq_len", 4096), | |
| self.scheduler.config.get("base_shift", 0.5), | |
| self.scheduler.config.get("max_shift", 1.15), | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| if num_inference_steps < 1: | |
| raise ValueError( | |
| f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" | |
| f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." | |
| ) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, latent_image_ids = self.prepare_latents( | |
| init_image, | |
| latent_timestep, | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| attention_mask = self._prepare_attention_mask( | |
| batch_size=latents.shape[0], | |
| sequence_length=image_seq_len, | |
| dtype=latents.dtype, | |
| attention_mask=prompt_attention_mask, | |
| ) | |
| negative_attention_mask = self._prepare_attention_mask( | |
| batch_size=latents.shape[0], | |
| sequence_length=image_seq_len, | |
| dtype=latents.dtype, | |
| attention_mask=negative_prompt_attention_mask, | |
| ) | |
| # 6. Prepare image embeddings | |
| if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( | |
| negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None | |
| ): | |
| negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters | |
| elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( | |
| negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None | |
| ): | |
| ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters | |
| if self.joint_attention_kwargs is None: | |
| self._joint_attention_kwargs = {} | |
| image_embeds = None | |
| negative_image_embeds = None | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: | |
| negative_image_embeds = self.prepare_ip_adapter_image_embeds( | |
| negative_ip_adapter_image, | |
| negative_ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| self._current_timestep = t | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]) | |
| if image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds | |
| noise_pred = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| attention_mask=attention_mask, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if self.do_classifier_free_guidance: | |
| if negative_image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds | |
| noise_pred_uncond = self.transformer( | |
| hidden_states=latents, | |
| timestep=timestep / 1000, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| txt_ids=negative_text_ids, | |
| img_ids=latent_image_ids, | |
| attention_mask=negative_attention_mask, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| self._current_timestep = None | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return ChromaPipelineOutput(images=image) | |