QwenTest
/
pythonProject
/diffusers-main
/src
/diffusers
/models
/transformers
/transformer_easyanimate.py
| # Copyright 2025 The EasyAnimate team and The HuggingFace Team. | |
| # All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...utils import logging | |
| from ...utils.torch_utils import maybe_allow_in_graph | |
| from ..attention import Attention, FeedForward | |
| from ..embeddings import TimestepEmbedding, Timesteps, get_3d_rotary_pos_embed | |
| from ..modeling_outputs import Transformer2DModelOutput | |
| from ..modeling_utils import ModelMixin | |
| from ..normalization import AdaLayerNorm, FP32LayerNorm, RMSNorm | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class EasyAnimateLayerNormZero(nn.Module): | |
| def __init__( | |
| self, | |
| conditioning_dim: int, | |
| embedding_dim: int, | |
| elementwise_affine: bool = True, | |
| eps: float = 1e-5, | |
| bias: bool = True, | |
| norm_type: str = "fp32_layer_norm", | |
| ) -> None: | |
| super().__init__() | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(conditioning_dim, 6 * embedding_dim, bias=bias) | |
| if norm_type == "layer_norm": | |
| self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=elementwise_affine, eps=eps) | |
| elif norm_type == "fp32_layer_norm": | |
| self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=elementwise_affine, eps=eps) | |
| else: | |
| raise ValueError( | |
| f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." | |
| ) | |
| def forward( | |
| self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| shift, scale, gate, enc_shift, enc_scale, enc_gate = self.linear(self.silu(temb)).chunk(6, dim=1) | |
| hidden_states = self.norm(hidden_states) * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
| encoder_hidden_states = self.norm(encoder_hidden_states) * (1 + enc_scale.unsqueeze(1)) + enc_shift.unsqueeze( | |
| 1 | |
| ) | |
| return hidden_states, encoder_hidden_states, gate, enc_gate | |
| class EasyAnimateRotaryPosEmbed(nn.Module): | |
| def __init__(self, patch_size: int, rope_dim: List[int]) -> None: | |
| super().__init__() | |
| self.patch_size = patch_size | |
| self.rope_dim = rope_dim | |
| def get_resize_crop_region_for_grid(self, src, tgt_width, tgt_height): | |
| tw = tgt_width | |
| th = tgt_height | |
| h, w = src | |
| r = h / w | |
| if r > (th / tw): | |
| resize_height = th | |
| resize_width = int(round(th / h * w)) | |
| else: | |
| resize_width = tw | |
| resize_height = int(round(tw / w * h)) | |
| crop_top = int(round((th - resize_height) / 2.0)) | |
| crop_left = int(round((tw - resize_width) / 2.0)) | |
| return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| bs, c, num_frames, grid_height, grid_width = hidden_states.size() | |
| grid_height = grid_height // self.patch_size | |
| grid_width = grid_width // self.patch_size | |
| base_size_width = 90 // self.patch_size | |
| base_size_height = 60 // self.patch_size | |
| grid_crops_coords = self.get_resize_crop_region_for_grid( | |
| (grid_height, grid_width), base_size_width, base_size_height | |
| ) | |
| image_rotary_emb = get_3d_rotary_pos_embed( | |
| self.rope_dim, | |
| grid_crops_coords, | |
| grid_size=(grid_height, grid_width), | |
| temporal_size=hidden_states.size(2), | |
| use_real=True, | |
| ) | |
| return image_rotary_emb | |
| class EasyAnimateAttnProcessor2_0: | |
| r""" | |
| Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is | |
| used in the EasyAnimateTransformer3DModel model. | |
| """ | |
| def __init__(self): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError( | |
| "EasyAnimateAttnProcessor2_0 requires PyTorch 2.0 or above. To use it, please install PyTorch 2.0." | |
| ) | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| if attn.add_q_proj is None and encoder_hidden_states is not None: | |
| hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
| # 1. QKV projections | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| # 2. QK normalization | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| # 3. Encoder condition QKV projection and normalization | |
| if attn.add_q_proj is not None and encoder_hidden_states is not None: | |
| encoder_query = attn.add_q_proj(encoder_hidden_states) | |
| encoder_key = attn.add_k_proj(encoder_hidden_states) | |
| encoder_value = attn.add_v_proj(encoder_hidden_states) | |
| encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2) | |
| if attn.norm_added_q is not None: | |
| encoder_query = attn.norm_added_q(encoder_query) | |
| if attn.norm_added_k is not None: | |
| encoder_key = attn.norm_added_k(encoder_key) | |
| query = torch.cat([encoder_query, query], dim=2) | |
| key = torch.cat([encoder_key, key], dim=2) | |
| value = torch.cat([encoder_value, value], dim=2) | |
| if image_rotary_emb is not None: | |
| from ..embeddings import apply_rotary_emb | |
| query[:, :, encoder_hidden_states.shape[1] :] = apply_rotary_emb( | |
| query[:, :, encoder_hidden_states.shape[1] :], image_rotary_emb | |
| ) | |
| if not attn.is_cross_attention: | |
| key[:, :, encoder_hidden_states.shape[1] :] = apply_rotary_emb( | |
| key[:, :, encoder_hidden_states.shape[1] :], image_rotary_emb | |
| ) | |
| # 5. Attention | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # 6. Output projection | |
| if encoder_hidden_states is not None: | |
| encoder_hidden_states, hidden_states = ( | |
| hidden_states[:, : encoder_hidden_states.shape[1]], | |
| hidden_states[:, encoder_hidden_states.shape[1] :], | |
| ) | |
| if getattr(attn, "to_out", None) is not None: | |
| hidden_states = attn.to_out[0](hidden_states) | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if getattr(attn, "to_add_out", None) is not None: | |
| encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
| else: | |
| if getattr(attn, "to_out", None) is not None: | |
| hidden_states = attn.to_out[0](hidden_states) | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states, encoder_hidden_states | |
| class EasyAnimateTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| time_embed_dim: int, | |
| dropout: float = 0.0, | |
| activation_fn: str = "gelu-approximate", | |
| norm_elementwise_affine: bool = True, | |
| norm_eps: float = 1e-6, | |
| final_dropout: bool = True, | |
| ff_inner_dim: Optional[int] = None, | |
| ff_bias: bool = True, | |
| qk_norm: bool = True, | |
| after_norm: bool = False, | |
| norm_type: str = "fp32_layer_norm", | |
| is_mmdit_block: bool = True, | |
| ): | |
| super().__init__() | |
| # Attention Part | |
| self.norm1 = EasyAnimateLayerNormZero( | |
| time_embed_dim, dim, norm_elementwise_affine, norm_eps, norm_type=norm_type, bias=True | |
| ) | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| qk_norm="layer_norm" if qk_norm else None, | |
| eps=1e-6, | |
| bias=True, | |
| added_proj_bias=True, | |
| added_kv_proj_dim=dim if is_mmdit_block else None, | |
| context_pre_only=False if is_mmdit_block else None, | |
| processor=EasyAnimateAttnProcessor2_0(), | |
| ) | |
| # FFN Part | |
| self.norm2 = EasyAnimateLayerNormZero( | |
| time_embed_dim, dim, norm_elementwise_affine, norm_eps, norm_type=norm_type, bias=True | |
| ) | |
| self.ff = FeedForward( | |
| dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| final_dropout=final_dropout, | |
| inner_dim=ff_inner_dim, | |
| bias=ff_bias, | |
| ) | |
| self.txt_ff = None | |
| if is_mmdit_block: | |
| self.txt_ff = FeedForward( | |
| dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| final_dropout=final_dropout, | |
| inner_dim=ff_inner_dim, | |
| bias=ff_bias, | |
| ) | |
| self.norm3 = None | |
| if after_norm: | |
| self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| temb: torch.Tensor, | |
| image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| # 1. Attention | |
| norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( | |
| hidden_states, encoder_hidden_states, temb | |
| ) | |
| attn_hidden_states, attn_encoder_hidden_states = self.attn1( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_encoder_hidden_states, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| hidden_states = hidden_states + gate_msa.unsqueeze(1) * attn_hidden_states | |
| encoder_hidden_states = encoder_hidden_states + enc_gate_msa.unsqueeze(1) * attn_encoder_hidden_states | |
| # 2. Feed-forward | |
| norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( | |
| hidden_states, encoder_hidden_states, temb | |
| ) | |
| if self.norm3 is not None: | |
| norm_hidden_states = self.norm3(self.ff(norm_hidden_states)) | |
| if self.txt_ff is not None: | |
| norm_encoder_hidden_states = self.norm3(self.txt_ff(norm_encoder_hidden_states)) | |
| else: | |
| norm_encoder_hidden_states = self.norm3(self.ff(norm_encoder_hidden_states)) | |
| else: | |
| norm_hidden_states = self.ff(norm_hidden_states) | |
| if self.txt_ff is not None: | |
| norm_encoder_hidden_states = self.txt_ff(norm_encoder_hidden_states) | |
| else: | |
| norm_encoder_hidden_states = self.ff(norm_encoder_hidden_states) | |
| hidden_states = hidden_states + gate_ff.unsqueeze(1) * norm_hidden_states | |
| encoder_hidden_states = encoder_hidden_states + enc_gate_ff.unsqueeze(1) * norm_encoder_hidden_states | |
| return hidden_states, encoder_hidden_states | |
| class EasyAnimateTransformer3DModel(ModelMixin, ConfigMixin): | |
| """ | |
| A Transformer model for video-like data in [EasyAnimate](https://github.com/aigc-apps/EasyAnimate). | |
| Parameters: | |
| num_attention_heads (`int`, defaults to `48`): | |
| The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`, defaults to `64`): | |
| The number of channels in each head. | |
| in_channels (`int`, defaults to `16`): | |
| The number of channels in the input. | |
| out_channels (`int`, *optional*, defaults to `16`): | |
| The number of channels in the output. | |
| patch_size (`int`, defaults to `2`): | |
| The size of the patches to use in the patch embedding layer. | |
| sample_width (`int`, defaults to `90`): | |
| The width of the input latents. | |
| sample_height (`int`, defaults to `60`): | |
| The height of the input latents. | |
| activation_fn (`str`, defaults to `"gelu-approximate"`): | |
| Activation function to use in feed-forward. | |
| timestep_activation_fn (`str`, defaults to `"silu"`): | |
| Activation function to use when generating the timestep embeddings. | |
| num_layers (`int`, defaults to `30`): | |
| The number of layers of Transformer blocks to use. | |
| mmdit_layers (`int`, defaults to `1000`): | |
| The number of layers of Multi Modal Transformer blocks to use. | |
| dropout (`float`, defaults to `0.0`): | |
| The dropout probability to use. | |
| time_embed_dim (`int`, defaults to `512`): | |
| Output dimension of timestep embeddings. | |
| text_embed_dim (`int`, defaults to `4096`): | |
| Input dimension of text embeddings from the text encoder. | |
| norm_eps (`float`, defaults to `1e-5`): | |
| The epsilon value to use in normalization layers. | |
| norm_elementwise_affine (`bool`, defaults to `True`): | |
| Whether to use elementwise affine in normalization layers. | |
| flip_sin_to_cos (`bool`, defaults to `True`): | |
| Whether to flip the sin to cos in the time embedding. | |
| time_position_encoding_type (`str`, defaults to `3d_rope`): | |
| Type of time position encoding. | |
| after_norm (`bool`, defaults to `False`): | |
| Flag to apply normalization after. | |
| resize_inpaint_mask_directly (`bool`, defaults to `True`): | |
| Flag to resize inpaint mask directly. | |
| enable_text_attention_mask (`bool`, defaults to `True`): | |
| Flag to enable text attention mask. | |
| add_noise_in_inpaint_model (`bool`, defaults to `False`): | |
| Flag to add noise in inpaint model. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| _no_split_modules = ["EasyAnimateTransformerBlock"] | |
| _skip_layerwise_casting_patterns = ["^proj$", "norm", "^proj_out$"] | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 48, | |
| attention_head_dim: int = 64, | |
| in_channels: Optional[int] = None, | |
| out_channels: Optional[int] = None, | |
| patch_size: Optional[int] = None, | |
| sample_width: int = 90, | |
| sample_height: int = 60, | |
| activation_fn: str = "gelu-approximate", | |
| timestep_activation_fn: str = "silu", | |
| freq_shift: int = 0, | |
| num_layers: int = 48, | |
| mmdit_layers: int = 48, | |
| dropout: float = 0.0, | |
| time_embed_dim: int = 512, | |
| add_norm_text_encoder: bool = False, | |
| text_embed_dim: int = 3584, | |
| text_embed_dim_t5: int = None, | |
| norm_eps: float = 1e-5, | |
| norm_elementwise_affine: bool = True, | |
| flip_sin_to_cos: bool = True, | |
| time_position_encoding_type: str = "3d_rope", | |
| after_norm=False, | |
| resize_inpaint_mask_directly: bool = True, | |
| enable_text_attention_mask: bool = True, | |
| add_noise_in_inpaint_model: bool = True, | |
| ): | |
| super().__init__() | |
| inner_dim = num_attention_heads * attention_head_dim | |
| # 1. Timestep embedding | |
| self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) | |
| self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) | |
| self.rope_embedding = EasyAnimateRotaryPosEmbed(patch_size, attention_head_dim) | |
| # 2. Patch embedding | |
| self.proj = nn.Conv2d( | |
| in_channels, inner_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=True | |
| ) | |
| # 3. Text refined embedding | |
| self.text_proj = None | |
| self.text_proj_t5 = None | |
| if not add_norm_text_encoder: | |
| self.text_proj = nn.Linear(text_embed_dim, inner_dim) | |
| if text_embed_dim_t5 is not None: | |
| self.text_proj_t5 = nn.Linear(text_embed_dim_t5, inner_dim) | |
| else: | |
| self.text_proj = nn.Sequential( | |
| RMSNorm(text_embed_dim, 1e-6, elementwise_affine=True), nn.Linear(text_embed_dim, inner_dim) | |
| ) | |
| if text_embed_dim_t5 is not None: | |
| self.text_proj_t5 = nn.Sequential( | |
| RMSNorm(text_embed_dim, 1e-6, elementwise_affine=True), nn.Linear(text_embed_dim_t5, inner_dim) | |
| ) | |
| # 4. Transformer blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| EasyAnimateTransformerBlock( | |
| dim=inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| time_embed_dim=time_embed_dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| after_norm=after_norm, | |
| is_mmdit_block=True if _ < mmdit_layers else False, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) | |
| # 5. Output norm & projection | |
| self.norm_out = AdaLayerNorm( | |
| embedding_dim=time_embed_dim, | |
| output_dim=2 * inner_dim, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| chunk_dim=1, | |
| ) | |
| self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| timestep: torch.Tensor, | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_hidden_states_t5: Optional[torch.Tensor] = None, | |
| inpaint_latents: Optional[torch.Tensor] = None, | |
| control_latents: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]: | |
| batch_size, channels, video_length, height, width = hidden_states.size() | |
| p = self.config.patch_size | |
| post_patch_height = height // p | |
| post_patch_width = width // p | |
| # 1. Time embedding | |
| temb = self.time_proj(timestep).to(dtype=hidden_states.dtype) | |
| temb = self.time_embedding(temb, timestep_cond) | |
| image_rotary_emb = self.rope_embedding(hidden_states) | |
| # 2. Patch embedding | |
| if inpaint_latents is not None: | |
| hidden_states = torch.concat([hidden_states, inpaint_latents], 1) | |
| if control_latents is not None: | |
| hidden_states = torch.concat([hidden_states, control_latents], 1) | |
| hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) # [B, C, F, H, W] -> [BF, C, H, W] | |
| hidden_states = self.proj(hidden_states) | |
| hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute( | |
| 0, 2, 1, 3, 4 | |
| ) # [BF, C, H, W] -> [B, F, C, H, W] | |
| hidden_states = hidden_states.flatten(2, 4).transpose(1, 2) # [B, F, C, H, W] -> [B, FHW, C] | |
| # 3. Text embedding | |
| encoder_hidden_states = self.text_proj(encoder_hidden_states) | |
| if encoder_hidden_states_t5 is not None: | |
| encoder_hidden_states_t5 = self.text_proj_t5(encoder_hidden_states_t5) | |
| encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1).contiguous() | |
| # 4. Transformer blocks | |
| for block in self.transformer_blocks: | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| hidden_states, encoder_hidden_states = self._gradient_checkpointing_func( | |
| block, hidden_states, encoder_hidden_states, temb, image_rotary_emb | |
| ) | |
| else: | |
| hidden_states, encoder_hidden_states = block( | |
| hidden_states, encoder_hidden_states, temb, image_rotary_emb | |
| ) | |
| hidden_states = self.norm_final(hidden_states) | |
| # 5. Output norm & projection | |
| hidden_states = self.norm_out(hidden_states, temb=temb) | |
| hidden_states = self.proj_out(hidden_states) | |
| # 6. Unpatchify | |
| p = self.config.patch_size | |
| output = hidden_states.reshape(batch_size, video_length, post_patch_height, post_patch_width, channels, p, p) | |
| output = output.permute(0, 4, 1, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) | |