byvuong commited on
Commit
51e4f4a
1 Parent(s): 4a55c0f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 266.69 +/- 14.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3eced9e8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3eced9e940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3eced9e9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3eced9ea60>", "_build": "<function ActorCriticPolicy._build at 0x7f3eced9eaf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3eced9eb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3eced9ec10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3eced9eca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3eced9ed30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3eced9edc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3eced9ee50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3eced9eee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3eced87ab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673617446841238613, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0O2bxlnQY+wpc8PZbMTb7M7pa8lKy2PAAAAAAAAAAAMASVPlMQWD+2CXe+4qiuvjpnzz2leNa9AAAAAAAAAAAa23E9BpS/P6pI0j6OsQg+GsyDPb5qgT4AAAAAAAAAANqalr0mu5Q/30hIvu5+8L7sgea9c/3+vAAAAAAAAAAAZmWfvR/m0bstp7s8Js0kPd77Jb0gvQY+AACAPwAAgD/DyFS+vr6QP83X1r5WX/m+uJCavgC82b0AAAAAAAAAAGZJoL1TI0A/HdBYO2C9o75wrEq8813OPAAAAAAAAAAAM4+2u6SktT9jdxC/TNW5Pg7D0zsq5QI+AAAAAAAAAAAmA6k99uRauibwOLlVCGK06HXBObW+VzgAAIA/AAAAAICiT75FZY8/QkR+vr1/Ar/1a1y+gdCtuwAAAAAAAAAAmh65PPbkcrrFYPizfvOJroL8WTuF5qEzAACAPwAAgD8Nw7U9jsDmPR6aZr4H0Yi+x3chvbneo70AAAAAAAAAADO8RL5UqIi8Ar4ZvDowabqJXvM9qlg6OwAAgD8AAIA/5tcWvUgr0bqG/i08e9VaPCndFjwBpTu9AACAPwAAgD8A0OA8D9T9PnaLmrxAvZq+qGr7PG3dAL0AAAAAAAAAAJo+GL1cs226kV0itUDHTq94Pmg5+MNaNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdES+SylTckCUhpRSlIwBbJRNNAGMAXSUR0CblUOn2qT9dX2UKGgGaAloD0MIcJS8OgdzcECUhpRSlGgVTQ4BaBZHQJuVUWHk92Z1fZQoaAZoCWgPQwjy6bEtg6hwQJSGlFKUaBVNJQFoFkdAm5WNjG1hLHV9lChoBmgJaA9DCIC3QILiC3NAlIaUUpRoFU0QAWgWR0CblcJI1+AmdX2UKGgGaAloD0MIYCAIkOFicUCUhpRSlGgVTRMBaBZHQJuXZGsmv4d1fZQoaAZoCWgPQwj8VYDv9vpwQJSGlFKUaBVNEQFoFkdAm5fmpZOi4HV9lChoBmgJaA9DCEqYaftXzjtAlIaUUpRoFUvmaBZHQJuYUG3WnTB1fZQoaAZoCWgPQwh/h6JA3xRxQJSGlFKUaBVNKwFoFkdAm5hok/r0KHV9lChoBmgJaA9DCMZRuYkaRXNAlIaUUpRoFU0jAWgWR0CbmLDRc/t6dX2UKGgGaAloD0MIFokJarj9cECUhpRSlGgVTRoBaBZHQJuY7xJ/XoV1fZQoaAZoCWgPQwiX5esy/G9xQJSGlFKUaBVNUgFoFkdAm5kDf779AHV9lChoBmgJaA9DCCXNH9OahnBAlIaUUpRoFU0uAWgWR0CbmbedCmdidX2UKGgGaAloD0MIERyXcdM6bkCUhpRSlGgVTRQBaBZHQJuacDfWMCN1fZQoaAZoCWgPQwgyWHGqtbBsQJSGlFKUaBVNHgFoFkdAm5riSvC/GnV9lChoBmgJaA9DCKuTMxR3Lm5AlIaUUpRoFU0mAWgWR0Cbmu/H5rP/dX2UKGgGaAloD0MItMu3Piy/b0CUhpRSlGgVTR4BaBZHQJua90NjLB91fZQoaAZoCWgPQwggKo2Y2dZuQJSGlFKUaBVNDQFoFkdAm5zLvTgEU3V9lChoBmgJaA9DCAVvSKPC53FAlIaUUpRoFU0lAWgWR0CbnYMjNY8udX2UKGgGaAloD0MI7C5QUuCma0CUhpRSlGgVTR0BaBZHQJudmrmyPdV1fZQoaAZoCWgPQwjlZOJWQbpwQJSGlFKUaBVNKwFoFkdAm55PLkjop3V9lChoBmgJaA9DCFkw8UdR5XFAlIaUUpRoFUvwaBZHQJue5FhG6PN1fZQoaAZoCWgPQwgSwTi4dC1zQJSGlFKUaBVNAgFoFkdAm5/IrjHXE3V9lChoBmgJaA9DCLrcYKgDqXJAlIaUUpRoFU0+AWgWR0CboMJLM9r5dX2UKGgGaAloD0MIrfpcbcUrUUCUhpRSlGgVS81oFkdAm6EEKNQ0oHV9lChoBmgJaA9DCJ3zUxwH6GxAlIaUUpRoFU0qAWgWR0CboXkJKJ2udX2UKGgGaAloD0MImkNSC+U7cUCUhpRSlGgVTScBaBZHQJuhwxsVLzx1fZQoaAZoCWgPQwgnvtpRnAtyQJSGlFKUaBVNSgFoFkdAm6I45xR2sHV9lChoBmgJaA9DCGGlgopqLnRAlIaUUpRoFUvzaBZHQJuiTUgB91F1fZQoaAZoCWgPQwh5ILJIE+hwQJSGlFKUaBVNIQFoFkdAm6JjefqX4XV9lChoBmgJaA9DCOZ3msx4OnFAlIaUUpRoFU1AAWgWR0CbonRG+bmVdX2UKGgGaAloD0MI95MxPkzkcECUhpRSlGgVTRQBaBZHQJujCTjebd91fZQoaAZoCWgPQwinO088J5pxQJSGlFKUaBVNLgFoFkdAm6NMkMTewnV9lChoBmgJaA9DCETC9/6GNnFAlIaUUpRoFU0MAWgWR0CbpVm5UcXFdX2UKGgGaAloD0MIfHvXoO8vcECUhpRSlGgVTSsBaBZHQJulhyWAwwl1fZQoaAZoCWgPQwia7Qp9MMdxQJSGlFKUaBVNLwFoFkdAm6ZHokiUxHV9lChoBmgJaA9DCByVm6ilZG9AlIaUUpRoFU0sAWgWR0Cbpvndfsu4dX2UKGgGaAloD0MIgA7z5cVwcECUhpRSlGgVTR8BaBZHQJunK9qUNa11fZQoaAZoCWgPQwjbi2g7psdtQJSGlFKUaBVNBQFoFkdAm6dM1TBInXV9lChoBmgJaA9DCOJYF7fRz3BAlIaUUpRoFU04AWgWR0CbqbnqFAVxdX2UKGgGaAloD0MIVKhuLv5TckCUhpRSlGgVTSsBaBZHQJuqBZkkKNR1fZQoaAZoCWgPQwjNHmgFBghxQJSGlFKUaBVNGAFoFkdAm6o3oLXtjXV9lChoBmgJaA9DCFeW6Cyz4G1AlIaUUpRoFU1EAWgWR0Cbql6q814xdX2UKGgGaAloD0MIWAOUhtpAckCUhpRSlGgVTRoBaBZHQJuqck4WDYh1fZQoaAZoCWgPQwgMkGgCBepyQJSGlFKUaBVNKAFoFkdAm6q+/1xsEnV9lChoBmgJaA9DCIYdxqT/enFAlIaUUpRoFU1JAWgWR0CbqxebutwKdX2UKGgGaAloD0MIqcDJNrDwcECUhpRSlGgVTSYBaBZHQJu+Z8neBQN1fZQoaAZoCWgPQwh3vTRFgHNsQJSGlFKUaBVNNAFoFkdAm756yfL9uXV9lChoBmgJaA9DCJ0QOugSqHJAlIaUUpRoFU2BAWgWR0Cbv5pGnXNDdX2UKGgGaAloD0MIrFeR0UFRcECUhpRSlGgVTSABaBZHQJvANga3qiZ1fZQoaAZoCWgPQwgqH4KqEfRxQJSGlFKUaBVNLQFoFkdAm8DBo7FKkHV9lChoBmgJaA9DCPEr1nBRm3FAlIaUUpRoFU0DAWgWR0CbwSTxXnyNdX2UKGgGaAloD0MIyTocXeVXcUCUhpRSlGgVTSUBaBZHQJvCRZDArQR1fZQoaAZoCWgPQwj0UrExL8JxQJSGlFKUaBVNOQFoFkdAm8KHyI55q3V9lChoBmgJaA9DCBqIZTPHZ3NAlIaUUpRoFU0DAWgWR0CbxFKOT7l8dX2UKGgGaAloD0MIZAJ+jaRYcUCUhpRSlGgVTRcBaBZHQJvEhEiMYMx1fZQoaAZoCWgPQwg+ldOeUllzQJSGlFKUaBVNkAFoFkdAm8S2UB4lhXV9lChoBmgJaA9DCKs/wjCgxnBAlIaUUpRoFU0AAWgWR0CbxOgYxcmjdX2UKGgGaAloD0MIeomxTL8oc0CUhpRSlGgVTSoBaBZHQJvFbIJZ4fR1fZQoaAZoCWgPQwjQ8dHiDMxyQJSGlFKUaBVNCQFoFkdAm8WT8pCrtHV9lChoBmgJaA9DCLcos0FmbXBAlIaUUpRoFU0qAWgWR0Cbxby8zyjIdX2UKGgGaAloD0MIq1s9J710b0CUhpRSlGgVTQsBaBZHQJvGVsl9jPR1fZQoaAZoCWgPQwg08+Sagq5vQJSGlFKUaBVNQgFoFkdAm8Z11fVqe3V9lChoBmgJaA9DCAJnKVnO13BAlIaUUpRoFUv5aBZHQJvIrdWQwK11fZQoaAZoCWgPQwjeH+9V66NyQJSGlFKUaBVNbQFoFkdAm8kl6E8JU3V9lChoBmgJaA9DCMnnFU+9O3BAlIaUUpRoFU0ZAWgWR0CbyU+8Gs3idX2UKGgGaAloD0MIVBuciH46bUCUhpRSlGgVTS8BaBZHQJvJZELH+611fZQoaAZoCWgPQwjDK0mea9pvQJSGlFKUaBVNEgFoFkdAm8qE7GNrCXV9lChoBmgJaA9DCNcUyOzswHFAlIaUUpRoFU0eAWgWR0Cbyy5QP7N0dX2UKGgGaAloD0MIFFysqAEDckCUhpRSlGgVS/NoFkdAm8ul6zE74nV9lChoBmgJaA9DCGPVIMytVXFAlIaUUpRoFU0OAWgWR0CbzEjYZl4DdX2UKGgGaAloD0MI9tN/1nyEbECUhpRSlGgVTQwBaBZHQJvMjbj94u91fZQoaAZoCWgPQwjqlEc3gi9wQJSGlFKUaBVL+2gWR0CbzLSFoL5RdX2UKGgGaAloD0MIJ4QOugQQcECUhpRSlGgVTQ4BaBZHQJvNlke6qbV1fZQoaAZoCWgPQwhYqDXNO/VwQJSGlFKUaBVN1wFoFkdAm82aZML4OHV9lChoBmgJaA9DCJepSfAGNW5AlIaUUpRoFU0DAWgWR0CbzeJPIn0DdX2UKGgGaAloD0MIDM11GindckCUhpRSlGgVTSYBaBZHQJvODwMH8j11fZQoaAZoCWgPQwjpJ5zdWjFyQJSGlFKUaBVNRgFoFkdAm85KS5iEx3V9lChoBmgJaA9DCMI0DB9R7HBAlIaUUpRoFU1AAWgWR0Cbz4lWwNb1dX2UKGgGaAloD0MIDmq/tZOmcECUhpRSlGgVTRQBaBZHQJvRMxvegth1fZQoaAZoCWgPQwhhHFw65klxQJSGlFKUaBVNMAFoFkdAm9Gl23azvHV9lChoBmgJaA9DCA3H8xnQnnJAlIaUUpRoFU0jAWgWR0Cb0egB91EFdX2UKGgGaAloD0MIaOvgYG9xbUCUhpRSlGgVTUEBaBZHQJvSuDWbw0B1fZQoaAZoCWgPQwiA12fOunZwQJSGlFKUaBVNIAFoFkdAm9MVDBuXNXV9lChoBmgJaA9DCBkBFY6gVXJAlIaUUpRoFUvtaBZHQJvTkD5j6N51fZQoaAZoCWgPQwhPO/w12cxuQJSGlFKUaBVNBgFoFkdAm9QPUWl/IHV9lChoBmgJaA9DCEsi+yBL3XFAlIaUUpRoFU0fAWgWR0Cb1CzFMqSYdX2UKGgGaAloD0MIPE1mvK3lcECUhpRSlGgVTTkBaBZHQJvUfHaN+9d1fZQoaAZoCWgPQwjjpgaaT8tsQJSGlFKUaBVNCAFoFkdAm9SP7BO58XV9lChoBmgJaA9DCNzVq8jorm5AlIaUUpRoFU0PAWgWR0Cb1ZZOzposdX2UKGgGaAloD0MIrmUyHM/YcECUhpRSlGgVTQgBaBZHQJvVs5tFa0R1fZQoaAZoCWgPQwiv6qwWWAFwQJSGlFKUaBVNFgFoFkdAm9Y7ULDyfHV9lChoBmgJaA9DCI8dVOJ67nJAlIaUUpRoFU0tAWgWR0Cb1lsQumJndX2UKGgGaAloD0MI5pMVwxU+cUCUhpRSlGgVTT4BaBZHQJvXbRE4Nqh1fZQoaAZoCWgPQwjiPnJrEhRwQJSGlFKUaBVL9mgWR0Cb2GicoYvWdX2UKGgGaAloD0MI2dE41O9fcUCUhpRSlGgVTVsBaBZHQJvZqZof0Vd1fZQoaAZoCWgPQwg6ysFsAt5uQJSGlFKUaBVNIAFoFkdAm9oCcXm/33V9lChoBmgJaA9DCFcIq7EEu29AlIaUUpRoFU0NAWgWR0Cb2psUIsy0dX2UKGgGaAloD0MIvAhTlMvmcUCUhpRSlGgVS+JoFkdAm9rDcmBvrHV9lChoBmgJaA9DCL2nctpTZnNAlIaUUpRoFU0IAWgWR0Cb220btJFtdX2UKGgGaAloD0MIVaLsLSUrcUCUhpRSlGgVTSQBaBZHQJvbwEt/WlN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1bd6656374cce0854130402739fc797b3c2c1d5fe5ad3119959b1a3f0bb3d3c
3
+ size 147412
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3eced9e8b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3eced9e940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3eced9e9d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3eced9ea60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3eced9eaf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3eced9eb80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3eced9ec10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3eced9eca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3eced9ed30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3eced9edc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3eced9ee50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3eced9eee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f3eced87ab0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673617446841238613,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0O2bxlnQY+wpc8PZbMTb7M7pa8lKy2PAAAAAAAAAAAMASVPlMQWD+2CXe+4qiuvjpnzz2leNa9AAAAAAAAAAAa23E9BpS/P6pI0j6OsQg+GsyDPb5qgT4AAAAAAAAAANqalr0mu5Q/30hIvu5+8L7sgea9c/3+vAAAAAAAAAAAZmWfvR/m0bstp7s8Js0kPd77Jb0gvQY+AACAPwAAgD/DyFS+vr6QP83X1r5WX/m+uJCavgC82b0AAAAAAAAAAGZJoL1TI0A/HdBYO2C9o75wrEq8813OPAAAAAAAAAAAM4+2u6SktT9jdxC/TNW5Pg7D0zsq5QI+AAAAAAAAAAAmA6k99uRauibwOLlVCGK06HXBObW+VzgAAIA/AAAAAICiT75FZY8/QkR+vr1/Ar/1a1y+gdCtuwAAAAAAAAAAmh65PPbkcrrFYPizfvOJroL8WTuF5qEzAACAPwAAgD8Nw7U9jsDmPR6aZr4H0Yi+x3chvbneo70AAAAAAAAAADO8RL5UqIi8Ar4ZvDowabqJXvM9qlg6OwAAgD8AAIA/5tcWvUgr0bqG/i08e9VaPCndFjwBpTu9AACAPwAAgD8A0OA8D9T9PnaLmrxAvZq+qGr7PG3dAL0AAAAAAAAAAJo+GL1cs226kV0itUDHTq94Pmg5+MNaNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdES+SylTckCUhpRSlIwBbJRNNAGMAXSUR0CblUOn2qT9dX2UKGgGaAloD0MIcJS8OgdzcECUhpRSlGgVTQ4BaBZHQJuVUWHk92Z1fZQoaAZoCWgPQwjy6bEtg6hwQJSGlFKUaBVNJQFoFkdAm5WNjG1hLHV9lChoBmgJaA9DCIC3QILiC3NAlIaUUpRoFU0QAWgWR0CblcJI1+AmdX2UKGgGaAloD0MIYCAIkOFicUCUhpRSlGgVTRMBaBZHQJuXZGsmv4d1fZQoaAZoCWgPQwj8VYDv9vpwQJSGlFKUaBVNEQFoFkdAm5fmpZOi4HV9lChoBmgJaA9DCEqYaftXzjtAlIaUUpRoFUvmaBZHQJuYUG3WnTB1fZQoaAZoCWgPQwh/h6JA3xRxQJSGlFKUaBVNKwFoFkdAm5hok/r0KHV9lChoBmgJaA9DCMZRuYkaRXNAlIaUUpRoFU0jAWgWR0CbmLDRc/t6dX2UKGgGaAloD0MIFokJarj9cECUhpRSlGgVTRoBaBZHQJuY7xJ/XoV1fZQoaAZoCWgPQwiX5esy/G9xQJSGlFKUaBVNUgFoFkdAm5kDf779AHV9lChoBmgJaA9DCCXNH9OahnBAlIaUUpRoFU0uAWgWR0CbmbedCmdidX2UKGgGaAloD0MIERyXcdM6bkCUhpRSlGgVTRQBaBZHQJuacDfWMCN1fZQoaAZoCWgPQwgyWHGqtbBsQJSGlFKUaBVNHgFoFkdAm5riSvC/GnV9lChoBmgJaA9DCKuTMxR3Lm5AlIaUUpRoFU0mAWgWR0Cbmu/H5rP/dX2UKGgGaAloD0MItMu3Piy/b0CUhpRSlGgVTR4BaBZHQJua90NjLB91fZQoaAZoCWgPQwggKo2Y2dZuQJSGlFKUaBVNDQFoFkdAm5zLvTgEU3V9lChoBmgJaA9DCAVvSKPC53FAlIaUUpRoFU0lAWgWR0CbnYMjNY8udX2UKGgGaAloD0MI7C5QUuCma0CUhpRSlGgVTR0BaBZHQJudmrmyPdV1fZQoaAZoCWgPQwjlZOJWQbpwQJSGlFKUaBVNKwFoFkdAm55PLkjop3V9lChoBmgJaA9DCFkw8UdR5XFAlIaUUpRoFUvwaBZHQJue5FhG6PN1fZQoaAZoCWgPQwgSwTi4dC1zQJSGlFKUaBVNAgFoFkdAm5/IrjHXE3V9lChoBmgJaA9DCLrcYKgDqXJAlIaUUpRoFU0+AWgWR0CboMJLM9r5dX2UKGgGaAloD0MIrfpcbcUrUUCUhpRSlGgVS81oFkdAm6EEKNQ0oHV9lChoBmgJaA9DCJ3zUxwH6GxAlIaUUpRoFU0qAWgWR0CboXkJKJ2udX2UKGgGaAloD0MImkNSC+U7cUCUhpRSlGgVTScBaBZHQJuhwxsVLzx1fZQoaAZoCWgPQwgnvtpRnAtyQJSGlFKUaBVNSgFoFkdAm6I45xR2sHV9lChoBmgJaA9DCGGlgopqLnRAlIaUUpRoFUvzaBZHQJuiTUgB91F1fZQoaAZoCWgPQwh5ILJIE+hwQJSGlFKUaBVNIQFoFkdAm6JjefqX4XV9lChoBmgJaA9DCOZ3msx4OnFAlIaUUpRoFU1AAWgWR0CbonRG+bmVdX2UKGgGaAloD0MI95MxPkzkcECUhpRSlGgVTRQBaBZHQJujCTjebd91fZQoaAZoCWgPQwinO088J5pxQJSGlFKUaBVNLgFoFkdAm6NMkMTewnV9lChoBmgJaA9DCETC9/6GNnFAlIaUUpRoFU0MAWgWR0CbpVm5UcXFdX2UKGgGaAloD0MIfHvXoO8vcECUhpRSlGgVTSsBaBZHQJulhyWAwwl1fZQoaAZoCWgPQwia7Qp9MMdxQJSGlFKUaBVNLwFoFkdAm6ZHokiUxHV9lChoBmgJaA9DCByVm6ilZG9AlIaUUpRoFU0sAWgWR0Cbpvndfsu4dX2UKGgGaAloD0MIgA7z5cVwcECUhpRSlGgVTR8BaBZHQJunK9qUNa11fZQoaAZoCWgPQwjbi2g7psdtQJSGlFKUaBVNBQFoFkdAm6dM1TBInXV9lChoBmgJaA9DCOJYF7fRz3BAlIaUUpRoFU04AWgWR0CbqbnqFAVxdX2UKGgGaAloD0MIVKhuLv5TckCUhpRSlGgVTSsBaBZHQJuqBZkkKNR1fZQoaAZoCWgPQwjNHmgFBghxQJSGlFKUaBVNGAFoFkdAm6o3oLXtjXV9lChoBmgJaA9DCFeW6Cyz4G1AlIaUUpRoFU1EAWgWR0Cbql6q814xdX2UKGgGaAloD0MIWAOUhtpAckCUhpRSlGgVTRoBaBZHQJuqck4WDYh1fZQoaAZoCWgPQwgMkGgCBepyQJSGlFKUaBVNKAFoFkdAm6q+/1xsEnV9lChoBmgJaA9DCIYdxqT/enFAlIaUUpRoFU1JAWgWR0CbqxebutwKdX2UKGgGaAloD0MIqcDJNrDwcECUhpRSlGgVTSYBaBZHQJu+Z8neBQN1fZQoaAZoCWgPQwh3vTRFgHNsQJSGlFKUaBVNNAFoFkdAm756yfL9uXV9lChoBmgJaA9DCJ0QOugSqHJAlIaUUpRoFU2BAWgWR0Cbv5pGnXNDdX2UKGgGaAloD0MIrFeR0UFRcECUhpRSlGgVTSABaBZHQJvANga3qiZ1fZQoaAZoCWgPQwgqH4KqEfRxQJSGlFKUaBVNLQFoFkdAm8DBo7FKkHV9lChoBmgJaA9DCPEr1nBRm3FAlIaUUpRoFU0DAWgWR0CbwSTxXnyNdX2UKGgGaAloD0MIyTocXeVXcUCUhpRSlGgVTSUBaBZHQJvCRZDArQR1fZQoaAZoCWgPQwj0UrExL8JxQJSGlFKUaBVNOQFoFkdAm8KHyI55q3V9lChoBmgJaA9DCBqIZTPHZ3NAlIaUUpRoFU0DAWgWR0CbxFKOT7l8dX2UKGgGaAloD0MIZAJ+jaRYcUCUhpRSlGgVTRcBaBZHQJvEhEiMYMx1fZQoaAZoCWgPQwg+ldOeUllzQJSGlFKUaBVNkAFoFkdAm8S2UB4lhXV9lChoBmgJaA9DCKs/wjCgxnBAlIaUUpRoFU0AAWgWR0CbxOgYxcmjdX2UKGgGaAloD0MIeomxTL8oc0CUhpRSlGgVTSoBaBZHQJvFbIJZ4fR1fZQoaAZoCWgPQwjQ8dHiDMxyQJSGlFKUaBVNCQFoFkdAm8WT8pCrtHV9lChoBmgJaA9DCLcos0FmbXBAlIaUUpRoFU0qAWgWR0Cbxby8zyjIdX2UKGgGaAloD0MIq1s9J710b0CUhpRSlGgVTQsBaBZHQJvGVsl9jPR1fZQoaAZoCWgPQwg08+Sagq5vQJSGlFKUaBVNQgFoFkdAm8Z11fVqe3V9lChoBmgJaA9DCAJnKVnO13BAlIaUUpRoFUv5aBZHQJvIrdWQwK11fZQoaAZoCWgPQwjeH+9V66NyQJSGlFKUaBVNbQFoFkdAm8kl6E8JU3V9lChoBmgJaA9DCMnnFU+9O3BAlIaUUpRoFU0ZAWgWR0CbyU+8Gs3idX2UKGgGaAloD0MIVBuciH46bUCUhpRSlGgVTS8BaBZHQJvJZELH+611fZQoaAZoCWgPQwjDK0mea9pvQJSGlFKUaBVNEgFoFkdAm8qE7GNrCXV9lChoBmgJaA9DCNcUyOzswHFAlIaUUpRoFU0eAWgWR0Cbyy5QP7N0dX2UKGgGaAloD0MIFFysqAEDckCUhpRSlGgVS/NoFkdAm8ul6zE74nV9lChoBmgJaA9DCGPVIMytVXFAlIaUUpRoFU0OAWgWR0CbzEjYZl4DdX2UKGgGaAloD0MI9tN/1nyEbECUhpRSlGgVTQwBaBZHQJvMjbj94u91fZQoaAZoCWgPQwjqlEc3gi9wQJSGlFKUaBVL+2gWR0CbzLSFoL5RdX2UKGgGaAloD0MIJ4QOugQQcECUhpRSlGgVTQ4BaBZHQJvNlke6qbV1fZQoaAZoCWgPQwhYqDXNO/VwQJSGlFKUaBVN1wFoFkdAm82aZML4OHV9lChoBmgJaA9DCJepSfAGNW5AlIaUUpRoFU0DAWgWR0CbzeJPIn0DdX2UKGgGaAloD0MIDM11GindckCUhpRSlGgVTSYBaBZHQJvODwMH8j11fZQoaAZoCWgPQwjpJ5zdWjFyQJSGlFKUaBVNRgFoFkdAm85KS5iEx3V9lChoBmgJaA9DCMI0DB9R7HBAlIaUUpRoFU1AAWgWR0Cbz4lWwNb1dX2UKGgGaAloD0MIDmq/tZOmcECUhpRSlGgVTRQBaBZHQJvRMxvegth1fZQoaAZoCWgPQwhhHFw65klxQJSGlFKUaBVNMAFoFkdAm9Gl23azvHV9lChoBmgJaA9DCA3H8xnQnnJAlIaUUpRoFU0jAWgWR0Cb0egB91EFdX2UKGgGaAloD0MIaOvgYG9xbUCUhpRSlGgVTUEBaBZHQJvSuDWbw0B1fZQoaAZoCWgPQwiA12fOunZwQJSGlFKUaBVNIAFoFkdAm9MVDBuXNXV9lChoBmgJaA9DCBkBFY6gVXJAlIaUUpRoFUvtaBZHQJvTkD5j6N51fZQoaAZoCWgPQwhPO/w12cxuQJSGlFKUaBVNBgFoFkdAm9QPUWl/IHV9lChoBmgJaA9DCEsi+yBL3XFAlIaUUpRoFU0fAWgWR0Cb1CzFMqSYdX2UKGgGaAloD0MIPE1mvK3lcECUhpRSlGgVTTkBaBZHQJvUfHaN+9d1fZQoaAZoCWgPQwjjpgaaT8tsQJSGlFKUaBVNCAFoFkdAm9SP7BO58XV9lChoBmgJaA9DCNzVq8jorm5AlIaUUpRoFU0PAWgWR0Cb1ZZOzposdX2UKGgGaAloD0MIrmUyHM/YcECUhpRSlGgVTQgBaBZHQJvVs5tFa0R1fZQoaAZoCWgPQwiv6qwWWAFwQJSGlFKUaBVNFgFoFkdAm9Y7ULDyfHV9lChoBmgJaA9DCI8dVOJ67nJAlIaUUpRoFU0tAWgWR0Cb1lsQumJndX2UKGgGaAloD0MI5pMVwxU+cUCUhpRSlGgVTT4BaBZHQJvXbRE4Nqh1fZQoaAZoCWgPQwjiPnJrEhRwQJSGlFKUaBVL9mgWR0Cb2GicoYvWdX2UKGgGaAloD0MI2dE41O9fcUCUhpRSlGgVTVsBaBZHQJvZqZof0Vd1fZQoaAZoCWgPQwg6ysFsAt5uQJSGlFKUaBVNIAFoFkdAm9oCcXm/33V9lChoBmgJaA9DCFcIq7EEu29AlIaUUpRoFU0NAWgWR0Cb2psUIsy0dX2UKGgGaAloD0MIvAhTlMvmcUCUhpRSlGgVS+JoFkdAm9rDcmBvrHV9lChoBmgJaA9DCL2nctpTZnNAlIaUUpRoFU0IAWgWR0Cb220btJFtdX2UKGgGaAloD0MIVaLsLSUrcUCUhpRSlGgVTSQBaBZHQJvbwEt/WlN1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e09ca32feda4358785da04609397b3aa09326bdd5b7fcb7aed097f4b6a6eed70
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7596a96230db59cb01086a56b61b650aa1fa660a1da5cfb18580bb42c6e7b430
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (212 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 266.6889074915077, "std_reward": 14.536397481996849, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-13T14:38:51.465671"}