Upload README.md
Browse filesAdd example usage.
README.md
CHANGED
@@ -6,7 +6,29 @@ Here is an example of a ChatTS application, which allows users to interact with
|
|
6 |
![Chat](figures/chat_example.png)
|
7 |
|
8 |
## Usage
|
9 |
-
This model is fine-tuned on the QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) model. For more usage details, please refer to the `README.md` in the ChatTS repository.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
## Reference
|
12 |
- QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)
|
|
|
6 |
![Chat](figures/chat_example.png)
|
7 |
|
8 |
## Usage
|
9 |
+
- This model is fine-tuned on the QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) model. For more usage details, please refer to the `README.md` in the ChatTS repository.
|
10 |
+
- An example usage of ChatTS (with `HuggingFace`):
|
11 |
+
```python
|
12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
|
13 |
+
import torch
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
# Load the model, tokenizer and processor
|
17 |
+
model = AutoModelForCausalLM.from_pretrained("./ckpt", trust_remote_code=True, device_map=0, torch_dtype='float16')
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("./ckpt", trust_remote_code=True)
|
19 |
+
processor = AutoProcessor.from_pretrained("./ckpt", trust_remote_code=True, tokenizer=tokenizer)
|
20 |
+
# Create time series and prompts
|
21 |
+
timeseries = np.sin(np.arange(256) / 10) * 5.0
|
22 |
+
timeseries[100:] -= 10.0
|
23 |
+
prompt = f"I have a time series length of 256: <ts><ts/>. Please analyze the local changes in this time series."
|
24 |
+
# Apply Chat Template
|
25 |
+
prompt = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|><|im_start|>user\n{prompt}<|im_end|><|im_start|>assistant\n"
|
26 |
+
# Convert to tensor
|
27 |
+
inputs = processor(text=[prompt], timeseries=[timeseries], padding=True, return_tensors="pt")
|
28 |
+
# Model Generate
|
29 |
+
outputs = model.generate(**inputs, max_new_tokens=300)
|
30 |
+
print(tokenizer.decode(outputs[0][len(inputs['input_ids'][0]):], skip_special_tokens=True))
|
31 |
+
```
|
32 |
|
33 |
## Reference
|
34 |
- QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)
|