xiezhe24 commited on
Commit
fb66acc
·
verified ·
1 Parent(s): b08d47e

Upload README.md

Browse files

Add example usage.

Files changed (1) hide show
  1. README.md +23 -1
README.md CHANGED
@@ -6,7 +6,29 @@ Here is an example of a ChatTS application, which allows users to interact with
6
  ![Chat](figures/chat_example.png)
7
 
8
  ## Usage
9
- This model is fine-tuned on the QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) model. For more usage details, please refer to the `README.md` in the ChatTS repository.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  ## Reference
12
  - QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)
 
6
  ![Chat](figures/chat_example.png)
7
 
8
  ## Usage
9
+ - This model is fine-tuned on the QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) model. For more usage details, please refer to the `README.md` in the ChatTS repository.
10
+ - An example usage of ChatTS (with `HuggingFace`):
11
+ ```python
12
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
13
+ import torch
14
+ import numpy as np
15
+
16
+ # Load the model, tokenizer and processor
17
+ model = AutoModelForCausalLM.from_pretrained("./ckpt", trust_remote_code=True, device_map=0, torch_dtype='float16')
18
+ tokenizer = AutoTokenizer.from_pretrained("./ckpt", trust_remote_code=True)
19
+ processor = AutoProcessor.from_pretrained("./ckpt", trust_remote_code=True, tokenizer=tokenizer)
20
+ # Create time series and prompts
21
+ timeseries = np.sin(np.arange(256) / 10) * 5.0
22
+ timeseries[100:] -= 10.0
23
+ prompt = f"I have a time series length of 256: <ts><ts/>. Please analyze the local changes in this time series."
24
+ # Apply Chat Template
25
+ prompt = f"<|im_start|>system\nYou are a helpful assistant.<|im_end|><|im_start|>user\n{prompt}<|im_end|><|im_start|>assistant\n"
26
+ # Convert to tensor
27
+ inputs = processor(text=[prompt], timeseries=[timeseries], padding=True, return_tensors="pt")
28
+ # Model Generate
29
+ outputs = model.generate(**inputs, max_new_tokens=300)
30
+ print(tokenizer.decode(outputs[0][len(inputs['input_ids'][0]):], skip_special_tokens=True))
31
+ ```
32
 
33
  ## Reference
34
  - QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)