bvk1ng commited on
Commit
e6c35d9
·
1 Parent(s): ecd1d0b

First LunarLander-v2 agent by Bvkng

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 275.09 +/- 22.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a62984160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a629841f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a62984280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a62984310>", "_build": "<function ActorCriticPolicy._build at 0x7f6a629843a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6a62984430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a629844c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6a62984550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a629845e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a62984670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a62984700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6a6297f600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670331226301175288, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWMfxQyVwcUCUhpRSlIwBbJRL6YwBdJRHQKAxzPGACnx1fZQoaAZoCWgPQwhkHvmDwcRxQJSGlFKUaBVL6WgWR0CgMfnPeHi4dX2UKGgGaAloD0MIPPVIg5v4cECUhpRSlGgVS91oFkdAoDI0yrPt2XV9lChoBmgJaA9DCJkrg2rDw3JAlIaUUpRoFU0PAWgWR0CgMnvsZ5zHdX2UKGgGaAloD0MIYajDCreQbUCUhpRSlGgVS+1oFkdAoDKAE8q4IHV9lChoBmgJaA9DCNTS3AphQHJAlIaUUpRoFUvPaBZHQKAyk43m3fB1fZQoaAZoCWgPQwjl0CLb+SRxQJSGlFKUaBVNCgFoFkdAoDKY8Md92HV9lChoBmgJaA9DCO7rwDmj0nJAlIaUUpRoFUvraBZHQKAynjdYW+J1fZQoaAZoCWgPQwjAety3mvxyQJSGlFKUaBVNGgFoFkdAoDLX5FgDzXV9lChoBmgJaA9DCLR1cLB3FnNAlIaUUpRoFUvzaBZHQKAy3wS8J2N1fZQoaAZoCWgPQwgC85Apn3BxQJSGlFKUaBVNGAFoFkdAoDQq/IsAenV9lChoBmgJaA9DCDUMHxHTzXFAlIaUUpRoFU0BAWgWR0CgNFCT2WY4dX2UKGgGaAloD0MIZED2encWcUCUhpRSlGgVS+xoFkdAoDTA79ycTnV9lChoBmgJaA9DCFfsL7snwG5AlIaUUpRoFUvnaBZHQKA08fZElVt1fZQoaAZoCWgPQwg66BIO/atxQJSGlFKUaBVL4mgWR0CgNWYNZvDQdX2UKGgGaAloD0MIylTBqKQTcECUhpRSlGgVTTgBaBZHQKA1pT2FnI11fZQoaAZoCWgPQwjL2qZ43EtwQJSGlFKUaBVL+mgWR0CgNgx/d69kdX2UKGgGaAloD0MIs5YC0n61ckCUhpRSlGgVS9toFkdAoDZS5I6KcnV9lChoBmgJaA9DCBjONczQFXFAlIaUUpRoFU0nAWgWR0CgNmAZKnNxdX2UKGgGaAloD0MIpHA9CtcncUCUhpRSlGgVS/VoFkdAoDZfLRrrPnV9lChoBmgJaA9DCGgFhqzu33FAlIaUUpRoFU0IAWgWR0CgNpEeQuEmdX2UKGgGaAloD0MIIH7+ezBpcUCUhpRSlGgVTQgBaBZHQKA2rQm/nGN1fZQoaAZoCWgPQwi8QbRWNBxvQJSGlFKUaBVL9mgWR0CgNrHVXmvGdX2UKGgGaAloD0MIrkoi+yCHckCUhpRSlGgVTRUBaBZHQKA20SOinHh1fZQoaAZoCWgPQwhfQ3BcxmBzQJSGlFKUaBVNJAFoFkdAoDb92V3Ux3V9lChoBmgJaA9DCBIvT+fKwHFAlIaUUpRoFU0BAWgWR0CgOEoDoyKvdX2UKGgGaAloD0MIE0NyMjF/c0CUhpRSlGgVS/5oFkdAoDhcx46fa3V9lChoBmgJaA9DCIOI1LSLrG9AlIaUUpRoFUvzaBZHQKA4xIUahpR1fZQoaAZoCWgPQwj68CxBBt1wQJSGlFKUaBVL5WgWR0CgOT6SLZSOdX2UKGgGaAloD0MIYobGE4GscUCUhpRSlGgVTQ4BaBZHQKA50tjCpFV1fZQoaAZoCWgPQwjpZKn1fp5vQJSGlFKUaBVL8WgWR0CgOf4150KadX2UKGgGaAloD0MI4QhSKTYyc0CUhpRSlGgVS+RoFkdAoDoQg5imVXV9lChoBmgJaA9DCNHoDmJnonBAlIaUUpRoFUvnaBZHQKA6Ko+fRNR1fZQoaAZoCWgPQwh9eJYgo2JwQJSGlFKUaBVL92gWR0CgOnW0Z3s5dX2UKGgGaAloD0MI3q0s0RnocUCUhpRSlGgVS+RoFkdAoDp7EzfrKXV9lChoBmgJaA9DCNnMIamFnm9AlIaUUpRoFUvsaBZHQKA6eup0fYB1fZQoaAZoCWgPQwgpr5XQXV5JQJSGlFKUaBVN6ANoFkdAoDqTW3BpH3V9lChoBmgJaA9DCI+pu7JL8HFAlIaUUpRoFUvsaBZHQKA6mbADaGp1fZQoaAZoCWgPQwi0xwvpsDNwQJSGlFKUaBVL5mgWR0CgOqclPacqdX2UKGgGaAloD0MItU5cjldBc0CUhpRSlGgVS/BoFkdAoDrnEbYK6XV9lChoBmgJaA9DCFpJK74h1G5AlIaUUpRoFUvjaBZHQKBWlcX3xnZ1fZQoaAZoCWgPQwiLNzKPvLhxQJSGlFKUaBVL5mgWR0CgVrxOclPadX2UKGgGaAloD0MIXRq/8EqmbUCUhpRSlGgVS+ZoFkdAoFeUQVbiZXV9lChoBmgJaA9DCPK1Z5YEZXNAlIaUUpRoFU0LAWgWR0CgV7xbr1M/dX2UKGgGaAloD0MILliqCzjRcECUhpRSlGgVS+ZoFkdAoFhfxri2lXV9lChoBmgJaA9DCHCZ02VxrHFAlIaUUpRoFUv7aBZHQKBYanbZezF1fZQoaAZoCWgPQwiFfTuJCJpyQJSGlFKUaBVL82gWR0CgWG6AOJ+EdX2UKGgGaAloD0MIxD9s6ZEzckCUhpRSlGgVS/JoFkdAoFh5f0Eov3V9lChoBmgJaA9DCNobfGEyvG9AlIaUUpRoFUvoaBZHQKBYrS/j81p1fZQoaAZoCWgPQwjXv+szZ5BuQJSGlFKUaBVL82gWR0CgWNYBmwqzdX2UKGgGaAloD0MII57sZgY1c0CUhpRSlGgVS+9oFkdAoFjlCmdiD3V9lChoBmgJaA9DCBpNLsZAX3NAlIaUUpRoFUvxaBZHQKBY+wXZXdV1fZQoaAZoCWgPQwjJPPIHw+JyQJSGlFKUaBVL/mgWR0CgWP8+aBqcdX2UKGgGaAloD0MI8+fbgqXObUCUhpRSlGgVS+doFkdAoFkjaPCEYnV9lChoBmgJaA9DCLGk3H3OpXFAlIaUUpRoFU0AAWgWR0CgWSbdi2DydX2UKGgGaAloD0MIey3ovbGAb0CUhpRSlGgVS9xoFkdAoFoJ59mYjXV9lChoBmgJaA9DCKSLTSuFuG9AlIaUUpRoFUvraBZHQKBaKEvkBCF1fZQoaAZoCWgPQwhOmgZFM2xwQJSGlFKUaBVL42gWR0CgWupVsDW9dX2UKGgGaAloD0MIPKOtSiLXcUCUhpRSlGgVS95oFkdAoFurAaef7XV9lChoBmgJaA9DCKBU+3S8R3FAlIaUUpRoFUvqaBZHQKBb2J0GNaR1fZQoaAZoCWgPQwgMPWL03LlvQJSGlFKUaBVL+WgWR0CgXCXbM5fddX2UKGgGaAloD0MIaVIKuj0RbkCUhpRSlGgVS+toFkdAoFwuFJxvN3V9lChoBmgJaA9DCCzy64eYj3JAlIaUUpRoFUv9aBZHQKBcSJdjXnR1fZQoaAZoCWgPQwidn+I4cNVyQJSGlFKUaBVL+mgWR0CgXJznRsuWdX2UKGgGaAloD0MIfewuUBJGckCUhpRSlGgVS/hoFkdAoFzGnAIppnV9lChoBmgJaA9DCIZyol2FVnFAlIaUUpRoFUv6aBZHQKBcyfI0ZWJ1fZQoaAZoCWgPQwj/dW7azCNyQJSGlFKUaBVNDAFoFkdAoFz1SqEOAnV9lChoBmgJaA9DCKw5QDBHO3JAlIaUUpRoFU1cAWgWR0CgXRfCyhSMdX2UKGgGaAloD0MIZCR7hNqJcECUhpRSlGgVTQYBaBZHQKBdIvPC2tx1fZQoaAZoCWgPQwh+VpkpLb9vQJSGlFKUaBVL3GgWR0CgXZ9xIatLdX2UKGgGaAloD0MI8+ZwrTbccUCUhpRSlGgVS+RoFkdAoF2igVXV9XV9lChoBmgJaA9DCJcA/FOqnXFAlIaUUpRoFUvgaBZHQKBebpV0cOt1fZQoaAZoCWgPQwitwfuqnK1xQJSGlFKUaBVL2mgWR0CgXxGIbfgrdX2UKGgGaAloD0MIBoGVQ4sAZECUhpRSlGgVTegDaBZHQKBfFjc2zfJ1fZQoaAZoCWgPQwgKZ7eWiR5wQJSGlFKUaBVL3WgWR0CgX47a7EpBdX2UKGgGaAloD0MI7e9sj94bcUCUhpRSlGgVS/xoFkdAoF+2p84Pw3V9lChoBmgJaA9DCDiCVIrdNnNAlIaUUpRoFUvZaBZHQKBf3SWJJoV1fZQoaAZoCWgPQwjeOCnM+wpxQJSGlFKUaBVL0mgWR0CgX+jaGpMpdX2UKGgGaAloD0MIbMuAsxRlckCUhpRSlGgVS/poFkdAoF/w4ZMtb3V9lChoBmgJaA9DCP+R6dApNnFAlIaUUpRoFU0FAWgWR0CgYDHE/B3zdX2UKGgGaAloD0MID9Qpj+6FcECUhpRSlGgVS+hoFkdAoGBitxMnJHV9lChoBmgJaA9DCNjTDn8Ng3FAlIaUUpRoFUveaBZHQKBgcR02cax1fZQoaAZoCWgPQwh5sTBEzk9xQJSGlFKUaBVL72gWR0CgYKYp+c6OdX2UKGgGaAloD0MIuamB5rOzcUCUhpRSlGgVTR0BaBZHQKBg9Wf9P1t1fZQoaAZoCWgPQwjsoX2sYNttQJSGlFKUaBVL42gWR0CgYP2ovSMMdX2UKGgGaAloD0MI+FPjpVvMckCUhpRSlGgVTQ0BaBZHQKBhgRJVbRp1fZQoaAZoCWgPQwjcZFQZhlRwQJSGlFKUaBVL/2gWR0CgYg9ovi97dX2UKGgGaAloD0MILj2a6gl7cUCUhpRSlGgVS+5oFkdAoGJdJ6IFeXV9lChoBmgJaA9DCG4VxEDXuHBAlIaUUpRoFUvwaBZHQKBiandfsu51fZQoaAZoCWgPQwhBDHTti9twQJSGlFKUaBVL6WgWR0CgYtAymALBdX2UKGgGaAloD0MIayxhbQxkcUCUhpRSlGgVS9toFkdAoGL1XRw6yXV9lChoBmgJaA9DCAfTMHxEwG9AlIaUUpRoFUv+aBZHQKBjWFKTSst1fZQoaAZoCWgPQwgOorWiDUtxQJSGlFKUaBVL82gWR0CgY2li8WbgdX2UKGgGaAloD0MIAyMva2Jrc0CUhpRSlGgVTQIBaBZHQKBjjGIbfgt1fZQoaAZoCWgPQwih2uBE9BhzQJSGlFKUaBVL7mgWR0CgY5mMfigkdX2UKGgGaAloD0MITYV4JN5yb0CUhpRSlGgVS/ZoFkdAoGP6bx3FDXV9lChoBmgJaA9DCGaFIt0PR3BAlIaUUpRoFUvraBZHQKBkC2w3YL91fZQoaAZoCWgPQwgDXmbYqFFyQJSGlFKUaBVL+WgWR0CgZJqJMxoJdX2UKGgGaAloD0MIXg8mxccOcUCUhpRSlGgVS/1oFkdAoGS4vBacJHV9lChoBmgJaA9DCF3Cobe4WXJAlIaUUpRoFUvcaBZHQKBk0ir1dxB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_lander_agent.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3aa74b01a5fa6a11019f83ecd75f9337862a73ee6966e8c53ff521496b9f082a
3
+ size 146252
lunar_lander_agent/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
lunar_lander_agent/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a62984160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a629841f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a62984280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a62984310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6a629843a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6a62984430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a629844c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6a62984550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a629845e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a62984670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a62984700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f6a6297f600>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670331226301175288,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.015808000000000044,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVNRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWMfxQyVwcUCUhpRSlIwBbJRL6YwBdJRHQKAxzPGACnx1fZQoaAZoCWgPQwhkHvmDwcRxQJSGlFKUaBVL6WgWR0CgMfnPeHi4dX2UKGgGaAloD0MIPPVIg5v4cECUhpRSlGgVS91oFkdAoDI0yrPt2XV9lChoBmgJaA9DCJkrg2rDw3JAlIaUUpRoFU0PAWgWR0CgMnvsZ5zHdX2UKGgGaAloD0MIYajDCreQbUCUhpRSlGgVS+1oFkdAoDKAE8q4IHV9lChoBmgJaA9DCNTS3AphQHJAlIaUUpRoFUvPaBZHQKAyk43m3fB1fZQoaAZoCWgPQwjl0CLb+SRxQJSGlFKUaBVNCgFoFkdAoDKY8Md92HV9lChoBmgJaA9DCO7rwDmj0nJAlIaUUpRoFUvraBZHQKAynjdYW+J1fZQoaAZoCWgPQwjAety3mvxyQJSGlFKUaBVNGgFoFkdAoDLX5FgDzXV9lChoBmgJaA9DCLR1cLB3FnNAlIaUUpRoFUvzaBZHQKAy3wS8J2N1fZQoaAZoCWgPQwgC85Apn3BxQJSGlFKUaBVNGAFoFkdAoDQq/IsAenV9lChoBmgJaA9DCDUMHxHTzXFAlIaUUpRoFU0BAWgWR0CgNFCT2WY4dX2UKGgGaAloD0MIZED2encWcUCUhpRSlGgVS+xoFkdAoDTA79ycTnV9lChoBmgJaA9DCFfsL7snwG5AlIaUUpRoFUvnaBZHQKA08fZElVt1fZQoaAZoCWgPQwg66BIO/atxQJSGlFKUaBVL4mgWR0CgNWYNZvDQdX2UKGgGaAloD0MIylTBqKQTcECUhpRSlGgVTTgBaBZHQKA1pT2FnI11fZQoaAZoCWgPQwjL2qZ43EtwQJSGlFKUaBVL+mgWR0CgNgx/d69kdX2UKGgGaAloD0MIs5YC0n61ckCUhpRSlGgVS9toFkdAoDZS5I6KcnV9lChoBmgJaA9DCBjONczQFXFAlIaUUpRoFU0nAWgWR0CgNmAZKnNxdX2UKGgGaAloD0MIpHA9CtcncUCUhpRSlGgVS/VoFkdAoDZfLRrrPnV9lChoBmgJaA9DCGgFhqzu33FAlIaUUpRoFU0IAWgWR0CgNpEeQuEmdX2UKGgGaAloD0MIIH7+ezBpcUCUhpRSlGgVTQgBaBZHQKA2rQm/nGN1fZQoaAZoCWgPQwi8QbRWNBxvQJSGlFKUaBVL9mgWR0CgNrHVXmvGdX2UKGgGaAloD0MIrkoi+yCHckCUhpRSlGgVTRUBaBZHQKA20SOinHh1fZQoaAZoCWgPQwhfQ3BcxmBzQJSGlFKUaBVNJAFoFkdAoDb92V3Ux3V9lChoBmgJaA9DCBIvT+fKwHFAlIaUUpRoFU0BAWgWR0CgOEoDoyKvdX2UKGgGaAloD0MIE0NyMjF/c0CUhpRSlGgVS/5oFkdAoDhcx46fa3V9lChoBmgJaA9DCIOI1LSLrG9AlIaUUpRoFUvzaBZHQKA4xIUahpR1fZQoaAZoCWgPQwj68CxBBt1wQJSGlFKUaBVL5WgWR0CgOT6SLZSOdX2UKGgGaAloD0MIYobGE4GscUCUhpRSlGgVTQ4BaBZHQKA50tjCpFV1fZQoaAZoCWgPQwjpZKn1fp5vQJSGlFKUaBVL8WgWR0CgOf4150KadX2UKGgGaAloD0MI4QhSKTYyc0CUhpRSlGgVS+RoFkdAoDoQg5imVXV9lChoBmgJaA9DCNHoDmJnonBAlIaUUpRoFUvnaBZHQKA6Ko+fRNR1fZQoaAZoCWgPQwh9eJYgo2JwQJSGlFKUaBVL92gWR0CgOnW0Z3s5dX2UKGgGaAloD0MI3q0s0RnocUCUhpRSlGgVS+RoFkdAoDp7EzfrKXV9lChoBmgJaA9DCNnMIamFnm9AlIaUUpRoFUvsaBZHQKA6eup0fYB1fZQoaAZoCWgPQwgpr5XQXV5JQJSGlFKUaBVN6ANoFkdAoDqTW3BpH3V9lChoBmgJaA9DCI+pu7JL8HFAlIaUUpRoFUvsaBZHQKA6mbADaGp1fZQoaAZoCWgPQwi0xwvpsDNwQJSGlFKUaBVL5mgWR0CgOqclPacqdX2UKGgGaAloD0MItU5cjldBc0CUhpRSlGgVS/BoFkdAoDrnEbYK6XV9lChoBmgJaA9DCFpJK74h1G5AlIaUUpRoFUvjaBZHQKBWlcX3xnZ1fZQoaAZoCWgPQwiLNzKPvLhxQJSGlFKUaBVL5mgWR0CgVrxOclPadX2UKGgGaAloD0MIXRq/8EqmbUCUhpRSlGgVS+ZoFkdAoFeUQVbiZXV9lChoBmgJaA9DCPK1Z5YEZXNAlIaUUpRoFU0LAWgWR0CgV7xbr1M/dX2UKGgGaAloD0MILliqCzjRcECUhpRSlGgVS+ZoFkdAoFhfxri2lXV9lChoBmgJaA9DCHCZ02VxrHFAlIaUUpRoFUv7aBZHQKBYanbZezF1fZQoaAZoCWgPQwiFfTuJCJpyQJSGlFKUaBVL82gWR0CgWG6AOJ+EdX2UKGgGaAloD0MIxD9s6ZEzckCUhpRSlGgVS/JoFkdAoFh5f0Eov3V9lChoBmgJaA9DCNobfGEyvG9AlIaUUpRoFUvoaBZHQKBYrS/j81p1fZQoaAZoCWgPQwjXv+szZ5BuQJSGlFKUaBVL82gWR0CgWNYBmwqzdX2UKGgGaAloD0MII57sZgY1c0CUhpRSlGgVS+9oFkdAoFjlCmdiD3V9lChoBmgJaA9DCBpNLsZAX3NAlIaUUpRoFUvxaBZHQKBY+wXZXdV1fZQoaAZoCWgPQwjJPPIHw+JyQJSGlFKUaBVL/mgWR0CgWP8+aBqcdX2UKGgGaAloD0MI8+fbgqXObUCUhpRSlGgVS+doFkdAoFkjaPCEYnV9lChoBmgJaA9DCLGk3H3OpXFAlIaUUpRoFU0AAWgWR0CgWSbdi2DydX2UKGgGaAloD0MIey3ovbGAb0CUhpRSlGgVS9xoFkdAoFoJ59mYjXV9lChoBmgJaA9DCKSLTSuFuG9AlIaUUpRoFUvraBZHQKBaKEvkBCF1fZQoaAZoCWgPQwhOmgZFM2xwQJSGlFKUaBVL42gWR0CgWupVsDW9dX2UKGgGaAloD0MIPKOtSiLXcUCUhpRSlGgVS95oFkdAoFurAaef7XV9lChoBmgJaA9DCKBU+3S8R3FAlIaUUpRoFUvqaBZHQKBb2J0GNaR1fZQoaAZoCWgPQwgMPWL03LlvQJSGlFKUaBVL+WgWR0CgXCXbM5fddX2UKGgGaAloD0MIaVIKuj0RbkCUhpRSlGgVS+toFkdAoFwuFJxvN3V9lChoBmgJaA9DCCzy64eYj3JAlIaUUpRoFUv9aBZHQKBcSJdjXnR1fZQoaAZoCWgPQwidn+I4cNVyQJSGlFKUaBVL+mgWR0CgXJznRsuWdX2UKGgGaAloD0MIfewuUBJGckCUhpRSlGgVS/hoFkdAoFzGnAIppnV9lChoBmgJaA9DCIZyol2FVnFAlIaUUpRoFUv6aBZHQKBcyfI0ZWJ1fZQoaAZoCWgPQwj/dW7azCNyQJSGlFKUaBVNDAFoFkdAoFz1SqEOAnV9lChoBmgJaA9DCKw5QDBHO3JAlIaUUpRoFU1cAWgWR0CgXRfCyhSMdX2UKGgGaAloD0MIZCR7hNqJcECUhpRSlGgVTQYBaBZHQKBdIvPC2tx1fZQoaAZoCWgPQwh+VpkpLb9vQJSGlFKUaBVL3GgWR0CgXZ9xIatLdX2UKGgGaAloD0MI8+ZwrTbccUCUhpRSlGgVS+RoFkdAoF2igVXV9XV9lChoBmgJaA9DCJcA/FOqnXFAlIaUUpRoFUvgaBZHQKBebpV0cOt1fZQoaAZoCWgPQwitwfuqnK1xQJSGlFKUaBVL2mgWR0CgXxGIbfgrdX2UKGgGaAloD0MIBoGVQ4sAZECUhpRSlGgVTegDaBZHQKBfFjc2zfJ1fZQoaAZoCWgPQwgKZ7eWiR5wQJSGlFKUaBVL3WgWR0CgX47a7EpBdX2UKGgGaAloD0MI7e9sj94bcUCUhpRSlGgVS/xoFkdAoF+2p84Pw3V9lChoBmgJaA9DCDiCVIrdNnNAlIaUUpRoFUvZaBZHQKBf3SWJJoV1fZQoaAZoCWgPQwjeOCnM+wpxQJSGlFKUaBVL0mgWR0CgX+jaGpMpdX2UKGgGaAloD0MIbMuAsxRlckCUhpRSlGgVS/poFkdAoF/w4ZMtb3V9lChoBmgJaA9DCP+R6dApNnFAlIaUUpRoFU0FAWgWR0CgYDHE/B3zdX2UKGgGaAloD0MID9Qpj+6FcECUhpRSlGgVS+hoFkdAoGBitxMnJHV9lChoBmgJaA9DCNjTDn8Ng3FAlIaUUpRoFUveaBZHQKBgcR02cax1fZQoaAZoCWgPQwh5sTBEzk9xQJSGlFKUaBVL72gWR0CgYKYp+c6OdX2UKGgGaAloD0MIuamB5rOzcUCUhpRSlGgVTR0BaBZHQKBg9Wf9P1t1fZQoaAZoCWgPQwjsoX2sYNttQJSGlFKUaBVL42gWR0CgYP2ovSMMdX2UKGgGaAloD0MI+FPjpVvMckCUhpRSlGgVTQ0BaBZHQKBhgRJVbRp1fZQoaAZoCWgPQwjcZFQZhlRwQJSGlFKUaBVL/2gWR0CgYg9ovi97dX2UKGgGaAloD0MILj2a6gl7cUCUhpRSlGgVS+5oFkdAoGJdJ6IFeXV9lChoBmgJaA9DCG4VxEDXuHBAlIaUUpRoFUvwaBZHQKBiandfsu51fZQoaAZoCWgPQwhBDHTti9twQJSGlFKUaBVL6WgWR0CgYtAymALBdX2UKGgGaAloD0MIayxhbQxkcUCUhpRSlGgVS9toFkdAoGL1XRw6yXV9lChoBmgJaA9DCAfTMHxEwG9AlIaUUpRoFUv+aBZHQKBjWFKTSst1fZQoaAZoCWgPQwgOorWiDUtxQJSGlFKUaBVL82gWR0CgY2li8WbgdX2UKGgGaAloD0MIAyMva2Jrc0CUhpRSlGgVTQIBaBZHQKBjjGIbfgt1fZQoaAZoCWgPQwih2uBE9BhzQJSGlFKUaBVL7mgWR0CgY5mMfigkdX2UKGgGaAloD0MITYV4JN5yb0CUhpRSlGgVS/ZoFkdAoGP6bx3FDXV9lChoBmgJaA9DCGaFIt0PR3BAlIaUUpRoFUvraBZHQKBkC2w3YL91fZQoaAZoCWgPQwgDXmbYqFFyQJSGlFKUaBVL+WgWR0CgZJqJMxoJdX2UKGgGaAloD0MIXg8mxccOcUCUhpRSlGgVS/1oFkdAoGS4vBacJHV9lChoBmgJaA9DCF3Cobe4WXJAlIaUUpRoFUvcaBZHQKBk0ir1dxB1ZS4="
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 620,
76
+ "n_steps": 1024,
77
+ "gamma": 0.999,
78
+ "gae_lambda": 0.98,
79
+ "ent_coef": 0.01,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 10,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
lunar_lander_agent/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fb6340676c00662805e5c37c253613ecb4cea080c0bc7b5ccb61501aaac581e
3
+ size 87993
lunar_lander_agent/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a38c19b4f5f8e211a431ffe5374136753c85ad5e5ba51a56341fee874f5ae12d
3
+ size 43201
lunar_lander_agent/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_lander_agent/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (228 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 275.08591998409804, "std_reward": 22.901268863836453, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-06T13:28:46.186107"}