update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- tweet_eval
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: bert-emotion
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: tweet_eval
|
18 |
+
type: tweet_eval
|
19 |
+
config: emotion
|
20 |
+
split: train
|
21 |
+
args: emotion
|
22 |
+
metrics:
|
23 |
+
- name: Precision
|
24 |
+
type: precision
|
25 |
+
value: 0.6872092440165337
|
26 |
+
- name: Recall
|
27 |
+
type: recall
|
28 |
+
value: 0.6954893287385614
|
29 |
+
---
|
30 |
+
|
31 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
32 |
+
should probably proofread and complete it, then remove this comment. -->
|
33 |
+
|
34 |
+
# bert-emotion
|
35 |
+
|
36 |
+
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset.
|
37 |
+
It achieves the following results on the evaluation set:
|
38 |
+
- Loss: 1.2767
|
39 |
+
- Precision: 0.6872
|
40 |
+
- Recall: 0.6955
|
41 |
+
- Fscore: 0.6906
|
42 |
+
|
43 |
+
## Model description
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Intended uses & limitations
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training and evaluation data
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Training procedure
|
56 |
+
|
57 |
+
### Training hyperparameters
|
58 |
+
|
59 |
+
The following hyperparameters were used during training:
|
60 |
+
- learning_rate: 5e-05
|
61 |
+
- train_batch_size: 4
|
62 |
+
- eval_batch_size: 4
|
63 |
+
- seed: 42
|
64 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
+
- lr_scheduler_type: linear
|
66 |
+
- num_epochs: 3
|
67 |
+
|
68 |
+
### Training results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
|
72 |
+
| 0.8803 | 1.0 | 815 | 0.7232 | 0.7435 | 0.6516 | 0.6775 |
|
73 |
+
| 0.549 | 2.0 | 1630 | 0.9588 | 0.7380 | 0.6640 | 0.6860 |
|
74 |
+
| 0.2732 | 3.0 | 2445 | 1.2767 | 0.6872 | 0.6955 | 0.6906 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.25.1
|
80 |
+
- Pytorch 1.13.0+cu116
|
81 |
+
- Datasets 2.8.0
|
82 |
+
- Tokenizers 0.13.2
|