DeepSeek-V3-split
/
inference
/.venv
/lib
/python3.10
/site-packages
/huggingface_hub
/keras_mixin.py
import collections.abc as collections | |
import json | |
import os | |
import warnings | |
from functools import wraps | |
from pathlib import Path | |
from shutil import copytree | |
from typing import Any, Dict, List, Optional, Union | |
from huggingface_hub import ModelHubMixin, snapshot_download | |
from huggingface_hub.utils import ( | |
get_tf_version, | |
is_graphviz_available, | |
is_pydot_available, | |
is_tf_available, | |
yaml_dump, | |
) | |
from . import constants | |
from .hf_api import HfApi | |
from .utils import SoftTemporaryDirectory, logging, validate_hf_hub_args | |
from .utils._typing import CallableT | |
logger = logging.get_logger(__name__) | |
keras = None | |
if is_tf_available(): | |
# Depending on which version of TensorFlow is installed, we need to import | |
# keras from the correct location. | |
# See https://github.com/tensorflow/tensorflow/releases/tag/v2.16.1. | |
# Note: saving a keras model only works with Keras<3.0. | |
try: | |
import tf_keras as keras # type: ignore | |
except ImportError: | |
import tensorflow as tf # type: ignore | |
keras = tf.keras | |
def _requires_keras_2_model(fn: CallableT) -> CallableT: | |
# Wrapper to raise if user tries to save a Keras 3.x model | |
def _inner(model, *args, **kwargs): | |
if not hasattr(model, "history"): # hacky way to check if model is Keras 2.x | |
raise NotImplementedError( | |
f"Cannot use '{fn.__name__}': Keras 3.x is not supported." | |
" Please save models manually and upload them using `upload_folder` or `huggingface-cli upload`." | |
) | |
return fn(model, *args, **kwargs) | |
return _inner # type: ignore [return-value] | |
def _flatten_dict(dictionary, parent_key=""): | |
"""Flatten a nested dictionary. | |
Reference: https://stackoverflow.com/a/6027615/10319735 | |
Args: | |
dictionary (`dict`): | |
The nested dictionary to be flattened. | |
parent_key (`str`): | |
The parent key to be prefixed to the children keys. | |
Necessary for recursing over the nested dictionary. | |
Returns: | |
The flattened dictionary. | |
""" | |
items = [] | |
for key, value in dictionary.items(): | |
new_key = f"{parent_key}.{key}" if parent_key else key | |
if isinstance(value, collections.MutableMapping): | |
items.extend( | |
_flatten_dict( | |
value, | |
new_key, | |
).items() | |
) | |
else: | |
items.append((new_key, value)) | |
return dict(items) | |
def _create_hyperparameter_table(model): | |
"""Parse hyperparameter dictionary into a markdown table.""" | |
table = None | |
if model.optimizer is not None: | |
optimizer_params = model.optimizer.get_config() | |
# flatten the configuration | |
optimizer_params = _flatten_dict(optimizer_params) | |
optimizer_params["training_precision"] = keras.mixed_precision.global_policy().name | |
table = "| Hyperparameters | Value |\n| :-- | :-- |\n" | |
for key, value in optimizer_params.items(): | |
table += f"| {key} | {value} |\n" | |
return table | |
def _plot_network(model, save_directory): | |
keras.utils.plot_model( | |
model, | |
to_file=f"{save_directory}/model.png", | |
show_shapes=False, | |
show_dtype=False, | |
show_layer_names=True, | |
rankdir="TB", | |
expand_nested=False, | |
dpi=96, | |
layer_range=None, | |
) | |
def _create_model_card( | |
model, | |
repo_dir: Path, | |
plot_model: bool = True, | |
metadata: Optional[dict] = None, | |
): | |
""" | |
Creates a model card for the repository. | |
Do not overwrite an existing README.md file. | |
""" | |
readme_path = repo_dir / "README.md" | |
if readme_path.exists(): | |
return | |
hyperparameters = _create_hyperparameter_table(model) | |
if plot_model and is_graphviz_available() and is_pydot_available(): | |
_plot_network(model, repo_dir) | |
if metadata is None: | |
metadata = {} | |
metadata["library_name"] = "keras" | |
model_card: str = "---\n" | |
model_card += yaml_dump(metadata, default_flow_style=False) | |
model_card += "---\n" | |
model_card += "\n## Model description\n\nMore information needed\n" | |
model_card += "\n## Intended uses & limitations\n\nMore information needed\n" | |
model_card += "\n## Training and evaluation data\n\nMore information needed\n" | |
if hyperparameters is not None: | |
model_card += "\n## Training procedure\n" | |
model_card += "\n### Training hyperparameters\n" | |
model_card += "\nThe following hyperparameters were used during training:\n\n" | |
model_card += hyperparameters | |
model_card += "\n" | |
if plot_model and os.path.exists(f"{repo_dir}/model.png"): | |
model_card += "\n ## Model Plot\n" | |
model_card += "\n<details>" | |
model_card += "\n<summary>View Model Plot</summary>\n" | |
path_to_plot = "./model.png" | |
model_card += f"\n![Model Image]({path_to_plot})\n" | |
model_card += "\n</details>" | |
readme_path.write_text(model_card) | |
def save_pretrained_keras( | |
model, | |
save_directory: Union[str, Path], | |
config: Optional[Dict[str, Any]] = None, | |
include_optimizer: bool = False, | |
plot_model: bool = True, | |
tags: Optional[Union[list, str]] = None, | |
**model_save_kwargs, | |
): | |
""" | |
Saves a Keras model to save_directory in SavedModel format. Use this if | |
you're using the Functional or Sequential APIs. | |
Args: | |
model (`Keras.Model`): | |
The [Keras | |
model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) | |
you'd like to save. The model must be compiled and built. | |
save_directory (`str` or `Path`): | |
Specify directory in which you want to save the Keras model. | |
config (`dict`, *optional*): | |
Configuration object to be saved alongside the model weights. | |
include_optimizer(`bool`, *optional*, defaults to `False`): | |
Whether or not to include optimizer in serialization. | |
plot_model (`bool`, *optional*, defaults to `True`): | |
Setting this to `True` will plot the model and put it in the model | |
card. Requires graphviz and pydot to be installed. | |
tags (Union[`str`,`list`], *optional*): | |
List of tags that are related to model or string of a single tag. See example tags | |
[here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1). | |
model_save_kwargs(`dict`, *optional*): | |
model_save_kwargs will be passed to | |
[`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model). | |
""" | |
if keras is None: | |
raise ImportError("Called a Tensorflow-specific function but could not import it.") | |
if not model.built: | |
raise ValueError("Model should be built before trying to save") | |
save_directory = Path(save_directory) | |
save_directory.mkdir(parents=True, exist_ok=True) | |
# saving config | |
if config: | |
if not isinstance(config, dict): | |
raise RuntimeError(f"Provided config to save_pretrained_keras should be a dict. Got: '{type(config)}'") | |
with (save_directory / constants.CONFIG_NAME).open("w") as f: | |
json.dump(config, f) | |
metadata = {} | |
if isinstance(tags, list): | |
metadata["tags"] = tags | |
elif isinstance(tags, str): | |
metadata["tags"] = [tags] | |
task_name = model_save_kwargs.pop("task_name", None) | |
if task_name is not None: | |
warnings.warn( | |
"`task_name` input argument is deprecated. Pass `tags` instead.", | |
FutureWarning, | |
) | |
if "tags" in metadata: | |
metadata["tags"].append(task_name) | |
else: | |
metadata["tags"] = [task_name] | |
if model.history is not None: | |
if model.history.history != {}: | |
path = save_directory / "history.json" | |
if path.exists(): | |
warnings.warn( | |
"`history.json` file already exists, it will be overwritten by the history of this version.", | |
UserWarning, | |
) | |
with path.open("w", encoding="utf-8") as f: | |
json.dump(model.history.history, f, indent=2, sort_keys=True) | |
_create_model_card(model, save_directory, plot_model, metadata) | |
keras.models.save_model(model, save_directory, include_optimizer=include_optimizer, **model_save_kwargs) | |
def from_pretrained_keras(*args, **kwargs) -> "KerasModelHubMixin": | |
r""" | |
Instantiate a pretrained Keras model from a pre-trained model from the Hub. | |
The model is expected to be in `SavedModel` format. | |
Args: | |
pretrained_model_name_or_path (`str` or `os.PathLike`): | |
Can be either: | |
- A string, the `model id` of a pretrained model hosted inside a | |
model repo on huggingface.co. Valid model ids can be located | |
at the root-level, like `bert-base-uncased`, or namespaced | |
under a user or organization name, like | |
`dbmdz/bert-base-german-cased`. | |
- You can add `revision` by appending `@` at the end of model_id | |
simply like this: `dbmdz/bert-base-german-cased@main` Revision | |
is the specific model version to use. It can be a branch name, | |
a tag name, or a commit id, since we use a git-based system | |
for storing models and other artifacts on huggingface.co, so | |
`revision` can be any identifier allowed by git. | |
- A path to a `directory` containing model weights saved using | |
[`~transformers.PreTrainedModel.save_pretrained`], e.g., | |
`./my_model_directory/`. | |
- `None` if you are both providing the configuration and state | |
dictionary (resp. with keyword arguments `config` and | |
`state_dict`). | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether to force the (re-)download of the model weights and | |
configuration files, overriding the cached versions if they exist. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., | |
`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The | |
proxies are used on each request. | |
token (`str` or `bool`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If | |
`True`, will use the token generated when running `transformers-cli | |
login` (stored in `~/.huggingface`). | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory in which a downloaded pretrained model | |
configuration should be cached if the standard cache should not be | |
used. | |
local_files_only(`bool`, *optional*, defaults to `False`): | |
Whether to only look at local files (i.e., do not try to download | |
the model). | |
model_kwargs (`Dict`, *optional*): | |
model_kwargs will be passed to the model during initialization | |
<Tip> | |
Passing `token=True` is required when you want to use a private | |
model. | |
</Tip> | |
""" | |
return KerasModelHubMixin.from_pretrained(*args, **kwargs) | |
def push_to_hub_keras( | |
model, | |
repo_id: str, | |
*, | |
config: Optional[dict] = None, | |
commit_message: str = "Push Keras model using huggingface_hub.", | |
private: Optional[bool] = None, | |
api_endpoint: Optional[str] = None, | |
token: Optional[str] = None, | |
branch: Optional[str] = None, | |
create_pr: Optional[bool] = None, | |
allow_patterns: Optional[Union[List[str], str]] = None, | |
ignore_patterns: Optional[Union[List[str], str]] = None, | |
delete_patterns: Optional[Union[List[str], str]] = None, | |
log_dir: Optional[str] = None, | |
include_optimizer: bool = False, | |
tags: Optional[Union[list, str]] = None, | |
plot_model: bool = True, | |
**model_save_kwargs, | |
): | |
""" | |
Upload model checkpoint to the Hub. | |
Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use | |
`delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more | |
details. | |
Args: | |
model (`Keras.Model`): | |
The [Keras model](`https://www.tensorflow.org/api_docs/python/tf/keras/Model`) you'd like to push to the | |
Hub. The model must be compiled and built. | |
repo_id (`str`): | |
ID of the repository to push to (example: `"username/my-model"`). | |
commit_message (`str`, *optional*, defaults to "Add Keras model"): | |
Message to commit while pushing. | |
private (`bool`, *optional*): | |
Whether the repository created should be private. | |
If `None` (default), the repo will be public unless the organization's default is private. | |
api_endpoint (`str`, *optional*): | |
The API endpoint to use when pushing the model to the hub. | |
token (`str`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If | |
not set, will use the token set when logging in with | |
`huggingface-cli login` (stored in `~/.huggingface`). | |
branch (`str`, *optional*): | |
The git branch on which to push the model. This defaults to | |
the default branch as specified in your repository, which | |
defaults to `"main"`. | |
create_pr (`boolean`, *optional*): | |
Whether or not to create a Pull Request from `branch` with that commit. | |
Defaults to `False`. | |
config (`dict`, *optional*): | |
Configuration object to be saved alongside the model weights. | |
allow_patterns (`List[str]` or `str`, *optional*): | |
If provided, only files matching at least one pattern are pushed. | |
ignore_patterns (`List[str]` or `str`, *optional*): | |
If provided, files matching any of the patterns are not pushed. | |
delete_patterns (`List[str]` or `str`, *optional*): | |
If provided, remote files matching any of the patterns will be deleted from the repo. | |
log_dir (`str`, *optional*): | |
TensorBoard logging directory to be pushed. The Hub automatically | |
hosts and displays a TensorBoard instance if log files are included | |
in the repository. | |
include_optimizer (`bool`, *optional*, defaults to `False`): | |
Whether or not to include optimizer during serialization. | |
tags (Union[`list`, `str`], *optional*): | |
List of tags that are related to model or string of a single tag. See example tags | |
[here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1). | |
plot_model (`bool`, *optional*, defaults to `True`): | |
Setting this to `True` will plot the model and put it in the model | |
card. Requires graphviz and pydot to be installed. | |
model_save_kwargs(`dict`, *optional*): | |
model_save_kwargs will be passed to | |
[`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model). | |
Returns: | |
The url of the commit of your model in the given repository. | |
""" | |
api = HfApi(endpoint=api_endpoint) | |
repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id | |
# Push the files to the repo in a single commit | |
with SoftTemporaryDirectory() as tmp: | |
saved_path = Path(tmp) / repo_id | |
save_pretrained_keras( | |
model, | |
saved_path, | |
config=config, | |
include_optimizer=include_optimizer, | |
tags=tags, | |
plot_model=plot_model, | |
**model_save_kwargs, | |
) | |
# If `log_dir` provided, delete remote logs and upload new ones | |
if log_dir is not None: | |
delete_patterns = ( | |
[] | |
if delete_patterns is None | |
else ( | |
[delete_patterns] # convert `delete_patterns` to a list | |
if isinstance(delete_patterns, str) | |
else delete_patterns | |
) | |
) | |
delete_patterns.append("logs/*") | |
copytree(log_dir, saved_path / "logs") | |
return api.upload_folder( | |
repo_type="model", | |
repo_id=repo_id, | |
folder_path=saved_path, | |
commit_message=commit_message, | |
token=token, | |
revision=branch, | |
create_pr=create_pr, | |
allow_patterns=allow_patterns, | |
ignore_patterns=ignore_patterns, | |
delete_patterns=delete_patterns, | |
) | |
class KerasModelHubMixin(ModelHubMixin): | |
""" | |
Implementation of [`ModelHubMixin`] to provide model Hub upload/download | |
capabilities to Keras models. | |
```python | |
>>> import tensorflow as tf | |
>>> from huggingface_hub import KerasModelHubMixin | |
>>> class MyModel(tf.keras.Model, KerasModelHubMixin): | |
... def __init__(self, **kwargs): | |
... super().__init__() | |
... self.config = kwargs.pop("config", None) | |
... self.dummy_inputs = ... | |
... self.layer = ... | |
... def call(self, *args): | |
... return ... | |
>>> # Initialize and compile the model as you normally would | |
>>> model = MyModel() | |
>>> model.compile(...) | |
>>> # Build the graph by training it or passing dummy inputs | |
>>> _ = model(model.dummy_inputs) | |
>>> # Save model weights to local directory | |
>>> model.save_pretrained("my-awesome-model") | |
>>> # Push model weights to the Hub | |
>>> model.push_to_hub("my-awesome-model") | |
>>> # Download and initialize weights from the Hub | |
>>> model = MyModel.from_pretrained("username/super-cool-model") | |
``` | |
""" | |
def _save_pretrained(self, save_directory): | |
save_pretrained_keras(self, save_directory) | |
def _from_pretrained( | |
cls, | |
model_id, | |
revision, | |
cache_dir, | |
force_download, | |
proxies, | |
resume_download, | |
local_files_only, | |
token, | |
config: Optional[Dict[str, Any]] = None, | |
**model_kwargs, | |
): | |
"""Here we just call [`from_pretrained_keras`] function so both the mixin and | |
functional APIs stay in sync. | |
TODO - Some args above aren't used since we are calling | |
snapshot_download instead of hf_hub_download. | |
""" | |
if keras is None: | |
raise ImportError("Called a TensorFlow-specific function but could not import it.") | |
# Root is either a local filepath matching model_id or a cached snapshot | |
if not os.path.isdir(model_id): | |
storage_folder = snapshot_download( | |
repo_id=model_id, | |
revision=revision, | |
cache_dir=cache_dir, | |
library_name="keras", | |
library_version=get_tf_version(), | |
) | |
else: | |
storage_folder = model_id | |
# TODO: change this in a future PR. We are not returning a KerasModelHubMixin instance here... | |
model = keras.models.load_model(storage_folder) | |
# For now, we add a new attribute, config, to store the config loaded from the hub/a local dir. | |
model.config = config | |
return model | |