Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 250.14 +/- 16.42
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1494199440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14941994d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1494199560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14941995f0>", "_build": "<function ActorCriticPolicy._build at 0x7f1494199680>", "forward": "<function ActorCriticPolicy.forward at 0x7f1494199710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14941997a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1494199830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14941998c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1494199950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14941999e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f149416c4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652215230.8778455, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFo/aD4KChC9BioPuxfqBjoQ9Xi+1ttJOgAAgD8AAIA/YMwNPiCfvT/YUvM+dihvvo4cMT4jD4I+AAAAAAAAAABA2m8+6nyLPxTSqT6PqRS/rSBWPtU7UDcAAAAAAAAAAFMvCj5IkYa8eB5/PTHzfj3Rz2m8OW+/uwAAgD8AAIA/bQtqPnwsIj+C9MY9Q9LKvgGY8z2TK169AAAAAAAAAADa2NA99oQkurJekDshQb02VYtkOTyesTUAAAAAAACAP41weT4u4rS8ick3O44ajrkZex++YGliugAAgD8AAIA/rcA1PkomDT5oUeK94CSAvr8lBL343QQ9AAAAAAAAAADNFWc+8KRcP/Jdtz7gsLO+A6KZPmfQlD0AAAAAAAAAAM1Qh70UJpy6IOsQNfwzJDDJCvi6gtdhtAAAgD8AAIA/mu3iO+/stT/mQi49Rhy6vVHM57sa0pI9AAAAAAAAAACaij49siKfP4OTWz6Dg/i+fuawPZD80D0AAAAAAAAAAHBygD63OGY/gaXHPgRe276NnbA+YJfLPQAAAAAAAAAATQWOvn+hrj4relk+ExqovvQna70f3Kk9AAAAAAAAAADzwNA9j442usKdwjdVxtexid2yu+Vv4rYAAIA/AACAP3Mqcj7sVOE8TJm3Og17fDkJiHg+980AugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIchQgCqbZcECUhpRSlIwBbJRNFAGMAXSUR0CU5ICEHt4SdX2UKGgGaAloD0MIZOsZwrGYb0CUhpRSlGgVTWMBaBZHQJTmP1wo9cN1fZQoaAZoCWgPQwhMwRpnUxFhQJSGlFKUaBVN6ANoFkdAlOZvwAlv63V9lChoBmgJaA9DCI+K/ztih3BAlIaUUpRoFU08AWgWR0CVUjXeWOZLdX2UKGgGaAloD0MIGt8Xlypwb0CUhpRSlGgVS/BoFkdAlVQ8SkCV8nV9lChoBmgJaA9DCBPVWwObsHBAlIaUUpRoFU0UAWgWR0CVVHQfZElWdX2UKGgGaAloD0MIwvf+Bq1gcUCUhpRSlGgVS8loFkdAlVUzYywfQ3V9lChoBmgJaA9DCG+bqRCPbnFAlIaUUpRoFU01AWgWR0CVVboicG1QdX2UKGgGaAloD0MIym5m9KMJcUCUhpRSlGgVTQABaBZHQJVXWvUz9CN1fZQoaAZoCWgPQwjQJRx6i2VxQJSGlFKUaBVNMAFoFkdAlVd1sguAZ3V9lChoBmgJaA9DCMEaZ9MRmnFAlIaUUpRoFU09A2gWR0CVV88qnWJ8dX2UKGgGaAloD0MIeCl1ybjJb0CUhpRSlGgVTRUBaBZHQJVYA6V+qip1fZQoaAZoCWgPQwg91/fhIJEkwJSGlFKUaBVLnGgWR0CVWDU83dbgdX2UKGgGaAloD0MI0vwxrU19b0CUhpRSlGgVS/FoFkdAlVnzKcNH6XV9lChoBmgJaA9DCHb/WIiOCnFAlIaUUpRoFU0TAWgWR0CVXW9hZyMldX2UKGgGaAloD0MIhBH7BFAMKsCUhpRSlGgVS8FoFkdAlV2hLkCFK3V9lChoBmgJaA9DCDM334huTGRAlIaUUpRoFU3oA2gWR0CVYiZBLPD6dX2UKGgGaAloD0MI0T/BxYpWYUCUhpRSlGgVTegDaBZHQJViqRPoFFF1fZQoaAZoCWgPQwgH7GryVF1wQJSGlFKUaBVL8WgWR0CVYs655JK8dX2UKGgGaAloD0MIePATB9AbckCUhpRSlGgVS/JoFkdAlWNQUDdP+HV9lChoBmgJaA9DCLngDP4+FnJAlIaUUpRoFU0FAWgWR0CVY/Kf4AS4dX2UKGgGaAloD0MIdEUpIRgqcUCUhpRSlGgVTRcBaBZHQJVkEYIjW091fZQoaAZoCWgPQwgQeGAAoZhxQJSGlFKUaBVNJwFoFkdAlWTMKTjebnV9lChoBmgJaA9DCJJ0zeQbV3JAlIaUUpRoFU0kAWgWR0CVZ01WsA/+dX2UKGgGaAloD0MIHAdeLTeGcUCUhpRSlGgVS9NoFkdAlWdZ6po9LnV9lChoBmgJaA9DCJ7vp8ZLLXFAlIaUUpRoFU3CAWgWR0CVabY3vQWvdX2UKGgGaAloD0MIuypQi8FlQUCUhpRSlGgVS8JoFkdAlWsmQOnVG3V9lChoBmgJaA9DCJWe6SVG129AlIaUUpRoFU02AWgWR0CVa4tbLU1AdX2UKGgGaAloD0MIuJBHcONIcUCUhpRSlGgVTUgCaBZHQJVsN4bCJoF1fZQoaAZoCWgPQwiiKNAncrJwQJSGlFKUaBVL7mgWR0CVbPl7tzCDdX2UKGgGaAloD0MIZ2DkZU2ycECUhpRSlGgVTQUBaBZHQJVtkAYHgP51fZQoaAZoCWgPQwjPTDCcK99xQJSGlFKUaBVL4WgWR0CVbZsWO6uodX2UKGgGaAloD0MIIbByaBFIcECUhpRSlGgVS9NoFkdAlW3bMkhRqHV9lChoBmgJaA9DCBGOWfbkbXBAlIaUUpRoFUv6aBZHQJVurDCP6sR1fZQoaAZoCWgPQwiwq8lTVkpuQJSGlFKUaBVNiQNoFkdAlXAwV0tAcHV9lChoBmgJaA9DCAagUbp0Em9AlIaUUpRoFUvaaBZHQJVweUTtb9t1fZQoaAZoCWgPQwgo02hycexwQJSGlFKUaBVNhAJoFkdAlXCfLcKw6nV9lChoBmgJaA9DCJjBGJHo7nBAlIaUUpRoFUvpaBZHQJVw8o3Jgb91fZQoaAZoCWgPQwjzHJHvEqlwQJSGlFKUaBVL9mgWR0CVc4u+AVfvdX2UKGgGaAloD0MIysABLd06ckCUhpRSlGgVS81oFkdAlXVAxnFo+XV9lChoBmgJaA9DCCIZcmy9rnBAlIaUUpRoFU0AAWgWR0CVdWhY/3WXdX2UKGgGaAloD0MIbk4lA0CnbkCUhpRSlGgVS+VoFkdAlXZCvC/Gl3V9lChoBmgJaA9DCCulZ3pJFHFAlIaUUpRoFU3kA2gWR0CVdlUlRgqmdX2UKGgGaAloD0MIh22LMhscJ0CUhpRSlGgVS6xoFkdAlXb8K5TZQHV9lChoBmgJaA9DCD3vxoICXXBAlIaUUpRoFUvxaBZHQJV3BZlnRLN1fZQoaAZoCWgPQwjTvU7qy9hvQJSGlFKUaBVNDgFoFkdAlXj952QnyHV9lChoBmgJaA9DCDD186aivnBAlIaUUpRoFU1LAWgWR0CVecNwzch1dX2UKGgGaAloD0MIaoXpe836cECUhpRSlGgVS/doFkdAlXqwuIyj6HV9lChoBmgJaA9DCMhe7/54m3BAlIaUUpRoFU0JAWgWR0CVewjjJdSmdX2UKGgGaAloD0MIlfPF3ovbcECUhpRSlGgVTRUBaBZHQJV7ChkAggZ1fZQoaAZoCWgPQwizYU1lUU9xQJSGlFKUaBVL0mgWR0CVe/gBcRlIdX2UKGgGaAloD0MIWf0RhkFTcECUhpRSlGgVTakBaBZHQJV8xXgccVB1fZQoaAZoCWgPQwgFxCRcyOdCQJSGlFKUaBVL12gWR0CVfb4keIVNdX2UKGgGaAloD0MIvFruzISNcUCUhpRSlGgVTZUCaBZHQJV929bor4F1fZQoaAZoCWgPQwjgoSjQJ+pdQJSGlFKUaBVN6ANoFkdAlX4kF8ohIXV9lChoBmgJaA9DCDlHHR1Xf21AlIaUUpRoFUvkaBZHQJV+VNXYDkl1fZQoaAZoCWgPQwiu2F92zz5wQJSGlFKUaBVL/2gWR0CVf/M5OrQxdX2UKGgGaAloD0MIxQH0+/5BM0CUhpRSlGgVS85oFkdAlYCRoZhrnHV9lChoBmgJaA9DCKDGvfkN93BAlIaUUpRoFU0OAWgWR0CVgQ/BWPtEdX2UKGgGaAloD0MI0VrR5rghcECUhpRSlGgVS/NoFkdAlYKQf+0gKXV9lChoBmgJaA9DCDNrKSAtQHFAlIaUUpRoFUvpaBZHQJWDRvxYq5N1fZQoaAZoCWgPQwgzqDY4kfZwQJSGlFKUaBVLzGgWR0CVhA3LFGXpdX2UKGgGaAloD0MILQsm/iiYQUCUhpRSlGgVS8JoFkdAlYUspkPMCHV9lChoBmgJaA9DCKN2vwqwYXBAlIaUUpRoFU0GAWgWR0CVhYXO4XoDdX2UKGgGaAloD0MI1xael0oBcECUhpRSlGgVS9loFkdAlYXPReC04XV9lChoBmgJaA9DCDsBTYTNTnBAlIaUUpRoFU1KAWgWR0CVhtj7yhBadX2UKGgGaAloD0MIlbiOcUXbbkCUhpRSlGgVTRUBaBZHQJWIECyQgcN1fZQoaAZoCWgPQwiOWfYksPptQJSGlFKUaBVNEAFoFkdAlYiJuyeI23V9lChoBmgJaA9DCO1kcJR85nBAlIaUUpRoFUvqaBZHQJWI+tihFmZ1fZQoaAZoCWgPQwjajxSRYZNKQJSGlFKUaBVLzWgWR0CViRUs4DLbdX2UKGgGaAloD0MIpwUv+gozcECUhpRSlGgVTQcBaBZHQJWKtAhStNl1fZQoaAZoCWgPQwg2sFWCRTFxQJSGlFKUaBVL2WgWR0CVixpgkTpQdX2UKGgGaAloD0MIdZSD2UTBcECUhpRSlGgVS+doFkdAlY0RJRO1v3V9lChoBmgJaA9DCBQJppqZJHBAlIaUUpRoFUvzaBZHQJWPfhn8Koh1fZQoaAZoCWgPQwio5QeuslJxQJSGlFKUaBVNBwFoFkdAlZATxLCemXV9lChoBmgJaA9DCFrW/WOhx29AlIaUUpRoFUvoaBZHQJWQNNEgGKR1fZQoaAZoCWgPQwhCsKpefuVvQJSGlFKUaBVL5mgWR0CVkWXNTtLMdX2UKGgGaAloD0MIsmSO5d2ab0CUhpRSlGgVS+poFkdAlZIRri2lVXV9lChoBmgJaA9DCG9lic4ypV1AlIaUUpRoFU3oA2gWR0CVkijBl+VkdX2UKGgGaAloD0MIKa4q++6pcECUhpRSlGgVS+FoFkdAlZI2DUVi4XV9lChoBmgJaA9DCPFo44i13DNAlIaUUpRoFUvVaBZHQJWT9C4SYgJ1fZQoaAZoCWgPQwjaVUj5ydhsQJSGlFKUaBVL4WgWR0CVlovcafjCdX2UKGgGaAloD0MI0UAsm/l8ckCUhpRSlGgVTTMBaBZHQJWXgXHim2t1fZQoaAZoCWgPQwgew2M/iz5yQJSGlFKUaBVNiQFoFkdAlZlIcrAgxXV9lChoBmgJaA9DCE/JObEH8m5AlIaUUpRoFUvtaBZHQJWZa6mO2iN1fZQoaAZoCWgPQwiPxTapKDNwQJSGlFKUaBVL8GgWR0CVmjm+CbtrdX2UKGgGaAloD0MIuHcN+pLYcECUhpRSlGgVS9NoFkdAlZsQyylennV9lChoBmgJaA9DCOz5muVyRXFAlIaUUpRoFUvqaBZHQJWbQg4ffXR1fZQoaAZoCWgPQwgzVMVUulFxQJSGlFKUaBVNDQFoFkdAlZt2NNrTIHV9lChoBmgJaA9DCAA2IEJca25AlIaUUpRoFUvqaBZHQJWb78m8dxR1fZQoaAZoCWgPQwhRM6SK4sNdQJSGlFKUaBVN6ANoFkdAlZ337Hhjv3V9lChoBmgJaA9DCEVj7e9sEGJAlIaUUpRoFU3oA2gWR0CVnqdmg8KYdX2UKGgGaAloD0MIX5ULlT9kcECUhpRSlGgVS/VoFkdAlaG2qtHQQnV9lChoBmgJaA9DCNttF5rrfmRAlIaUUpRoFU3oA2gWR0CVouwsGxD9dX2UKGgGaAloD0MIj4zV5j84cUCUhpRSlGgVS/hoFkdAlaQTslb/wXV9lChoBmgJaA9DCLmMmxpo93FAlIaUUpRoFU2DAWgWR0CVpIDlYEGJdX2UKGgGaAloD0MIiBHCo81icECUhpRSlGgVS/BoFkdAlaSY0EX+EXV9lChoBmgJaA9DCFH6Qsh5nnFAlIaUUpRoFU1XAWgWR0CVpVJm/WUbdX2UKGgGaAloD0MIaeVeYFaMbUCUhpRSlGgVS/doFkdAlaWlkc0cfnV9lChoBmgJaA9DCJVliGNd5G1AlIaUUpRoFUv3aBZHQJWl9QHiWE91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 230, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5648944d0765a242309f397fc856034514f7ca6340f156c244edf928e0d02a71
|
3 |
+
size 144042
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1494199440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14941994d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1494199560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14941995f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1494199680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1494199710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14941997a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1494199830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14941998c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1494199950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14941999e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f149416c4e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652215230.8778455,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFo/aD4KChC9BioPuxfqBjoQ9Xi+1ttJOgAAgD8AAIA/YMwNPiCfvT/YUvM+dihvvo4cMT4jD4I+AAAAAAAAAABA2m8+6nyLPxTSqT6PqRS/rSBWPtU7UDcAAAAAAAAAAFMvCj5IkYa8eB5/PTHzfj3Rz2m8OW+/uwAAgD8AAIA/bQtqPnwsIj+C9MY9Q9LKvgGY8z2TK169AAAAAAAAAADa2NA99oQkurJekDshQb02VYtkOTyesTUAAAAAAACAP41weT4u4rS8ick3O44ajrkZex++YGliugAAgD8AAIA/rcA1PkomDT5oUeK94CSAvr8lBL343QQ9AAAAAAAAAADNFWc+8KRcP/Jdtz7gsLO+A6KZPmfQlD0AAAAAAAAAAM1Qh70UJpy6IOsQNfwzJDDJCvi6gtdhtAAAgD8AAIA/mu3iO+/stT/mQi49Rhy6vVHM57sa0pI9AAAAAAAAAACaij49siKfP4OTWz6Dg/i+fuawPZD80D0AAAAAAAAAAHBygD63OGY/gaXHPgRe276NnbA+YJfLPQAAAAAAAAAATQWOvn+hrj4relk+ExqovvQna70f3Kk9AAAAAAAAAADzwNA9j442usKdwjdVxtexid2yu+Vv4rYAAIA/AACAP3Mqcj7sVOE8TJm3Og17fDkJiHg+980AugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIchQgCqbZcECUhpRSlIwBbJRNFAGMAXSUR0CU5ICEHt4SdX2UKGgGaAloD0MIZOsZwrGYb0CUhpRSlGgVTWMBaBZHQJTmP1wo9cN1fZQoaAZoCWgPQwhMwRpnUxFhQJSGlFKUaBVN6ANoFkdAlOZvwAlv63V9lChoBmgJaA9DCI+K/ztih3BAlIaUUpRoFU08AWgWR0CVUjXeWOZLdX2UKGgGaAloD0MIGt8Xlypwb0CUhpRSlGgVS/BoFkdAlVQ8SkCV8nV9lChoBmgJaA9DCBPVWwObsHBAlIaUUpRoFU0UAWgWR0CVVHQfZElWdX2UKGgGaAloD0MIwvf+Bq1gcUCUhpRSlGgVS8loFkdAlVUzYywfQ3V9lChoBmgJaA9DCG+bqRCPbnFAlIaUUpRoFU01AWgWR0CVVboicG1QdX2UKGgGaAloD0MIym5m9KMJcUCUhpRSlGgVTQABaBZHQJVXWvUz9CN1fZQoaAZoCWgPQwjQJRx6i2VxQJSGlFKUaBVNMAFoFkdAlVd1sguAZ3V9lChoBmgJaA9DCMEaZ9MRmnFAlIaUUpRoFU09A2gWR0CVV88qnWJ8dX2UKGgGaAloD0MIeCl1ybjJb0CUhpRSlGgVTRUBaBZHQJVYA6V+qip1fZQoaAZoCWgPQwg91/fhIJEkwJSGlFKUaBVLnGgWR0CVWDU83dbgdX2UKGgGaAloD0MI0vwxrU19b0CUhpRSlGgVS/FoFkdAlVnzKcNH6XV9lChoBmgJaA9DCHb/WIiOCnFAlIaUUpRoFU0TAWgWR0CVXW9hZyMldX2UKGgGaAloD0MIhBH7BFAMKsCUhpRSlGgVS8FoFkdAlV2hLkCFK3V9lChoBmgJaA9DCDM334huTGRAlIaUUpRoFU3oA2gWR0CVYiZBLPD6dX2UKGgGaAloD0MI0T/BxYpWYUCUhpRSlGgVTegDaBZHQJViqRPoFFF1fZQoaAZoCWgPQwgH7GryVF1wQJSGlFKUaBVL8WgWR0CVYs655JK8dX2UKGgGaAloD0MIePATB9AbckCUhpRSlGgVS/JoFkdAlWNQUDdP+HV9lChoBmgJaA9DCLngDP4+FnJAlIaUUpRoFU0FAWgWR0CVY/Kf4AS4dX2UKGgGaAloD0MIdEUpIRgqcUCUhpRSlGgVTRcBaBZHQJVkEYIjW091fZQoaAZoCWgPQwgQeGAAoZhxQJSGlFKUaBVNJwFoFkdAlWTMKTjebnV9lChoBmgJaA9DCJJ0zeQbV3JAlIaUUpRoFU0kAWgWR0CVZ01WsA/+dX2UKGgGaAloD0MIHAdeLTeGcUCUhpRSlGgVS9NoFkdAlWdZ6po9LnV9lChoBmgJaA9DCJ7vp8ZLLXFAlIaUUpRoFU3CAWgWR0CVabY3vQWvdX2UKGgGaAloD0MIuypQi8FlQUCUhpRSlGgVS8JoFkdAlWsmQOnVG3V9lChoBmgJaA9DCJWe6SVG129AlIaUUpRoFU02AWgWR0CVa4tbLU1AdX2UKGgGaAloD0MIuJBHcONIcUCUhpRSlGgVTUgCaBZHQJVsN4bCJoF1fZQoaAZoCWgPQwiiKNAncrJwQJSGlFKUaBVL7mgWR0CVbPl7tzCDdX2UKGgGaAloD0MIZ2DkZU2ycECUhpRSlGgVTQUBaBZHQJVtkAYHgP51fZQoaAZoCWgPQwjPTDCcK99xQJSGlFKUaBVL4WgWR0CVbZsWO6uodX2UKGgGaAloD0MIIbByaBFIcECUhpRSlGgVS9NoFkdAlW3bMkhRqHV9lChoBmgJaA9DCBGOWfbkbXBAlIaUUpRoFUv6aBZHQJVurDCP6sR1fZQoaAZoCWgPQwiwq8lTVkpuQJSGlFKUaBVNiQNoFkdAlXAwV0tAcHV9lChoBmgJaA9DCAagUbp0Em9AlIaUUpRoFUvaaBZHQJVweUTtb9t1fZQoaAZoCWgPQwgo02hycexwQJSGlFKUaBVNhAJoFkdAlXCfLcKw6nV9lChoBmgJaA9DCJjBGJHo7nBAlIaUUpRoFUvpaBZHQJVw8o3Jgb91fZQoaAZoCWgPQwjzHJHvEqlwQJSGlFKUaBVL9mgWR0CVc4u+AVfvdX2UKGgGaAloD0MIysABLd06ckCUhpRSlGgVS81oFkdAlXVAxnFo+XV9lChoBmgJaA9DCCIZcmy9rnBAlIaUUpRoFU0AAWgWR0CVdWhY/3WXdX2UKGgGaAloD0MIbk4lA0CnbkCUhpRSlGgVS+VoFkdAlXZCvC/Gl3V9lChoBmgJaA9DCCulZ3pJFHFAlIaUUpRoFU3kA2gWR0CVdlUlRgqmdX2UKGgGaAloD0MIh22LMhscJ0CUhpRSlGgVS6xoFkdAlXb8K5TZQHV9lChoBmgJaA9DCD3vxoICXXBAlIaUUpRoFUvxaBZHQJV3BZlnRLN1fZQoaAZoCWgPQwjTvU7qy9hvQJSGlFKUaBVNDgFoFkdAlXj952QnyHV9lChoBmgJaA9DCDD186aivnBAlIaUUpRoFU1LAWgWR0CVecNwzch1dX2UKGgGaAloD0MIaoXpe836cECUhpRSlGgVS/doFkdAlXqwuIyj6HV9lChoBmgJaA9DCMhe7/54m3BAlIaUUpRoFU0JAWgWR0CVewjjJdSmdX2UKGgGaAloD0MIlfPF3ovbcECUhpRSlGgVTRUBaBZHQJV7ChkAggZ1fZQoaAZoCWgPQwizYU1lUU9xQJSGlFKUaBVL0mgWR0CVe/gBcRlIdX2UKGgGaAloD0MIWf0RhkFTcECUhpRSlGgVTakBaBZHQJV8xXgccVB1fZQoaAZoCWgPQwgFxCRcyOdCQJSGlFKUaBVL12gWR0CVfb4keIVNdX2UKGgGaAloD0MIvFruzISNcUCUhpRSlGgVTZUCaBZHQJV929bor4F1fZQoaAZoCWgPQwjgoSjQJ+pdQJSGlFKUaBVN6ANoFkdAlX4kF8ohIXV9lChoBmgJaA9DCDlHHR1Xf21AlIaUUpRoFUvkaBZHQJV+VNXYDkl1fZQoaAZoCWgPQwiu2F92zz5wQJSGlFKUaBVL/2gWR0CVf/M5OrQxdX2UKGgGaAloD0MIxQH0+/5BM0CUhpRSlGgVS85oFkdAlYCRoZhrnHV9lChoBmgJaA9DCKDGvfkN93BAlIaUUpRoFU0OAWgWR0CVgQ/BWPtEdX2UKGgGaAloD0MI0VrR5rghcECUhpRSlGgVS/NoFkdAlYKQf+0gKXV9lChoBmgJaA9DCDNrKSAtQHFAlIaUUpRoFUvpaBZHQJWDRvxYq5N1fZQoaAZoCWgPQwgzqDY4kfZwQJSGlFKUaBVLzGgWR0CVhA3LFGXpdX2UKGgGaAloD0MILQsm/iiYQUCUhpRSlGgVS8JoFkdAlYUspkPMCHV9lChoBmgJaA9DCKN2vwqwYXBAlIaUUpRoFU0GAWgWR0CVhYXO4XoDdX2UKGgGaAloD0MI1xael0oBcECUhpRSlGgVS9loFkdAlYXPReC04XV9lChoBmgJaA9DCDsBTYTNTnBAlIaUUpRoFU1KAWgWR0CVhtj7yhBadX2UKGgGaAloD0MIlbiOcUXbbkCUhpRSlGgVTRUBaBZHQJWIECyQgcN1fZQoaAZoCWgPQwiOWfYksPptQJSGlFKUaBVNEAFoFkdAlYiJuyeI23V9lChoBmgJaA9DCO1kcJR85nBAlIaUUpRoFUvqaBZHQJWI+tihFmZ1fZQoaAZoCWgPQwjajxSRYZNKQJSGlFKUaBVLzWgWR0CViRUs4DLbdX2UKGgGaAloD0MIpwUv+gozcECUhpRSlGgVTQcBaBZHQJWKtAhStNl1fZQoaAZoCWgPQwg2sFWCRTFxQJSGlFKUaBVL2WgWR0CVixpgkTpQdX2UKGgGaAloD0MIdZSD2UTBcECUhpRSlGgVS+doFkdAlY0RJRO1v3V9lChoBmgJaA9DCBQJppqZJHBAlIaUUpRoFUvzaBZHQJWPfhn8Koh1fZQoaAZoCWgPQwio5QeuslJxQJSGlFKUaBVNBwFoFkdAlZATxLCemXV9lChoBmgJaA9DCFrW/WOhx29AlIaUUpRoFUvoaBZHQJWQNNEgGKR1fZQoaAZoCWgPQwhCsKpefuVvQJSGlFKUaBVL5mgWR0CVkWXNTtLMdX2UKGgGaAloD0MIsmSO5d2ab0CUhpRSlGgVS+poFkdAlZIRri2lVXV9lChoBmgJaA9DCG9lic4ypV1AlIaUUpRoFU3oA2gWR0CVkijBl+VkdX2UKGgGaAloD0MIKa4q++6pcECUhpRSlGgVS+FoFkdAlZI2DUVi4XV9lChoBmgJaA9DCPFo44i13DNAlIaUUpRoFUvVaBZHQJWT9C4SYgJ1fZQoaAZoCWgPQwjaVUj5ydhsQJSGlFKUaBVL4WgWR0CVlovcafjCdX2UKGgGaAloD0MI0UAsm/l8ckCUhpRSlGgVTTMBaBZHQJWXgXHim2t1fZQoaAZoCWgPQwgew2M/iz5yQJSGlFKUaBVNiQFoFkdAlZlIcrAgxXV9lChoBmgJaA9DCE/JObEH8m5AlIaUUpRoFUvtaBZHQJWZa6mO2iN1fZQoaAZoCWgPQwiPxTapKDNwQJSGlFKUaBVL8GgWR0CVmjm+CbtrdX2UKGgGaAloD0MIuHcN+pLYcECUhpRSlGgVS9NoFkdAlZsQyylennV9lChoBmgJaA9DCOz5muVyRXFAlIaUUpRoFUvqaBZHQJWbQg4ffXR1fZQoaAZoCWgPQwgzVMVUulFxQJSGlFKUaBVNDQFoFkdAlZt2NNrTIHV9lChoBmgJaA9DCAA2IEJca25AlIaUUpRoFUvqaBZHQJWb78m8dxR1fZQoaAZoCWgPQwhRM6SK4sNdQJSGlFKUaBVN6ANoFkdAlZ337Hhjv3V9lChoBmgJaA9DCEVj7e9sEGJAlIaUUpRoFU3oA2gWR0CVnqdmg8KYdX2UKGgGaAloD0MIX5ULlT9kcECUhpRSlGgVS/VoFkdAlaG2qtHQQnV9lChoBmgJaA9DCNttF5rrfmRAlIaUUpRoFU3oA2gWR0CVouwsGxD9dX2UKGgGaAloD0MIj4zV5j84cUCUhpRSlGgVS/hoFkdAlaQTslb/wXV9lChoBmgJaA9DCLmMmxpo93FAlIaUUpRoFU2DAWgWR0CVpIDlYEGJdX2UKGgGaAloD0MIiBHCo81icECUhpRSlGgVS/BoFkdAlaSY0EX+EXV9lChoBmgJaA9DCFH6Qsh5nnFAlIaUUpRoFU1XAWgWR0CVpVJm/WUbdX2UKGgGaAloD0MIaeVeYFaMbUCUhpRSlGgVS/doFkdAlaWlkc0cfnV9lChoBmgJaA9DCJVliGNd5G1AlIaUUpRoFUv3aBZHQJWl9QHiWE91ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 230,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0669718d4186d3d5d0002d1dd36dfbc22d9a773a9854db7833aa7c742192df4e
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dace6af5d9e2b50b87e935ffd141a0518001f81c89b9eb7f9500001854604fb
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:848a6742c0e41773885929dc94e6fe92e4d2868f58c6f4312174390ae1250bd4
|
3 |
+
size 228488
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 250.13588242764064, "std_reward": 16.417869235715482, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T21:03:17.987607"}
|