bstad commited on
Commit
a29c1f8
1 Parent(s): 4c0c8ac

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 250.14 +/- 16.42
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1494199440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14941994d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1494199560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14941995f0>", "_build": "<function ActorCriticPolicy._build at 0x7f1494199680>", "forward": "<function ActorCriticPolicy.forward at 0x7f1494199710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14941997a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1494199830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14941998c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1494199950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14941999e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f149416c4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652215230.8778455, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFo/aD4KChC9BioPuxfqBjoQ9Xi+1ttJOgAAgD8AAIA/YMwNPiCfvT/YUvM+dihvvo4cMT4jD4I+AAAAAAAAAABA2m8+6nyLPxTSqT6PqRS/rSBWPtU7UDcAAAAAAAAAAFMvCj5IkYa8eB5/PTHzfj3Rz2m8OW+/uwAAgD8AAIA/bQtqPnwsIj+C9MY9Q9LKvgGY8z2TK169AAAAAAAAAADa2NA99oQkurJekDshQb02VYtkOTyesTUAAAAAAACAP41weT4u4rS8ick3O44ajrkZex++YGliugAAgD8AAIA/rcA1PkomDT5oUeK94CSAvr8lBL343QQ9AAAAAAAAAADNFWc+8KRcP/Jdtz7gsLO+A6KZPmfQlD0AAAAAAAAAAM1Qh70UJpy6IOsQNfwzJDDJCvi6gtdhtAAAgD8AAIA/mu3iO+/stT/mQi49Rhy6vVHM57sa0pI9AAAAAAAAAACaij49siKfP4OTWz6Dg/i+fuawPZD80D0AAAAAAAAAAHBygD63OGY/gaXHPgRe276NnbA+YJfLPQAAAAAAAAAATQWOvn+hrj4relk+ExqovvQna70f3Kk9AAAAAAAAAADzwNA9j442usKdwjdVxtexid2yu+Vv4rYAAIA/AACAP3Mqcj7sVOE8TJm3Og17fDkJiHg+980AugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIchQgCqbZcECUhpRSlIwBbJRNFAGMAXSUR0CU5ICEHt4SdX2UKGgGaAloD0MIZOsZwrGYb0CUhpRSlGgVTWMBaBZHQJTmP1wo9cN1fZQoaAZoCWgPQwhMwRpnUxFhQJSGlFKUaBVN6ANoFkdAlOZvwAlv63V9lChoBmgJaA9DCI+K/ztih3BAlIaUUpRoFU08AWgWR0CVUjXeWOZLdX2UKGgGaAloD0MIGt8Xlypwb0CUhpRSlGgVS/BoFkdAlVQ8SkCV8nV9lChoBmgJaA9DCBPVWwObsHBAlIaUUpRoFU0UAWgWR0CVVHQfZElWdX2UKGgGaAloD0MIwvf+Bq1gcUCUhpRSlGgVS8loFkdAlVUzYywfQ3V9lChoBmgJaA9DCG+bqRCPbnFAlIaUUpRoFU01AWgWR0CVVboicG1QdX2UKGgGaAloD0MIym5m9KMJcUCUhpRSlGgVTQABaBZHQJVXWvUz9CN1fZQoaAZoCWgPQwjQJRx6i2VxQJSGlFKUaBVNMAFoFkdAlVd1sguAZ3V9lChoBmgJaA9DCMEaZ9MRmnFAlIaUUpRoFU09A2gWR0CVV88qnWJ8dX2UKGgGaAloD0MIeCl1ybjJb0CUhpRSlGgVTRUBaBZHQJVYA6V+qip1fZQoaAZoCWgPQwg91/fhIJEkwJSGlFKUaBVLnGgWR0CVWDU83dbgdX2UKGgGaAloD0MI0vwxrU19b0CUhpRSlGgVS/FoFkdAlVnzKcNH6XV9lChoBmgJaA9DCHb/WIiOCnFAlIaUUpRoFU0TAWgWR0CVXW9hZyMldX2UKGgGaAloD0MIhBH7BFAMKsCUhpRSlGgVS8FoFkdAlV2hLkCFK3V9lChoBmgJaA9DCDM334huTGRAlIaUUpRoFU3oA2gWR0CVYiZBLPD6dX2UKGgGaAloD0MI0T/BxYpWYUCUhpRSlGgVTegDaBZHQJViqRPoFFF1fZQoaAZoCWgPQwgH7GryVF1wQJSGlFKUaBVL8WgWR0CVYs655JK8dX2UKGgGaAloD0MIePATB9AbckCUhpRSlGgVS/JoFkdAlWNQUDdP+HV9lChoBmgJaA9DCLngDP4+FnJAlIaUUpRoFU0FAWgWR0CVY/Kf4AS4dX2UKGgGaAloD0MIdEUpIRgqcUCUhpRSlGgVTRcBaBZHQJVkEYIjW091fZQoaAZoCWgPQwgQeGAAoZhxQJSGlFKUaBVNJwFoFkdAlWTMKTjebnV9lChoBmgJaA9DCJJ0zeQbV3JAlIaUUpRoFU0kAWgWR0CVZ01WsA/+dX2UKGgGaAloD0MIHAdeLTeGcUCUhpRSlGgVS9NoFkdAlWdZ6po9LnV9lChoBmgJaA9DCJ7vp8ZLLXFAlIaUUpRoFU3CAWgWR0CVabY3vQWvdX2UKGgGaAloD0MIuypQi8FlQUCUhpRSlGgVS8JoFkdAlWsmQOnVG3V9lChoBmgJaA9DCJWe6SVG129AlIaUUpRoFU02AWgWR0CVa4tbLU1AdX2UKGgGaAloD0MIuJBHcONIcUCUhpRSlGgVTUgCaBZHQJVsN4bCJoF1fZQoaAZoCWgPQwiiKNAncrJwQJSGlFKUaBVL7mgWR0CVbPl7tzCDdX2UKGgGaAloD0MIZ2DkZU2ycECUhpRSlGgVTQUBaBZHQJVtkAYHgP51fZQoaAZoCWgPQwjPTDCcK99xQJSGlFKUaBVL4WgWR0CVbZsWO6uodX2UKGgGaAloD0MIIbByaBFIcECUhpRSlGgVS9NoFkdAlW3bMkhRqHV9lChoBmgJaA9DCBGOWfbkbXBAlIaUUpRoFUv6aBZHQJVurDCP6sR1fZQoaAZoCWgPQwiwq8lTVkpuQJSGlFKUaBVNiQNoFkdAlXAwV0tAcHV9lChoBmgJaA9DCAagUbp0Em9AlIaUUpRoFUvaaBZHQJVweUTtb9t1fZQoaAZoCWgPQwgo02hycexwQJSGlFKUaBVNhAJoFkdAlXCfLcKw6nV9lChoBmgJaA9DCJjBGJHo7nBAlIaUUpRoFUvpaBZHQJVw8o3Jgb91fZQoaAZoCWgPQwjzHJHvEqlwQJSGlFKUaBVL9mgWR0CVc4u+AVfvdX2UKGgGaAloD0MIysABLd06ckCUhpRSlGgVS81oFkdAlXVAxnFo+XV9lChoBmgJaA9DCCIZcmy9rnBAlIaUUpRoFU0AAWgWR0CVdWhY/3WXdX2UKGgGaAloD0MIbk4lA0CnbkCUhpRSlGgVS+VoFkdAlXZCvC/Gl3V9lChoBmgJaA9DCCulZ3pJFHFAlIaUUpRoFU3kA2gWR0CVdlUlRgqmdX2UKGgGaAloD0MIh22LMhscJ0CUhpRSlGgVS6xoFkdAlXb8K5TZQHV9lChoBmgJaA9DCD3vxoICXXBAlIaUUpRoFUvxaBZHQJV3BZlnRLN1fZQoaAZoCWgPQwjTvU7qy9hvQJSGlFKUaBVNDgFoFkdAlXj952QnyHV9lChoBmgJaA9DCDD186aivnBAlIaUUpRoFU1LAWgWR0CVecNwzch1dX2UKGgGaAloD0MIaoXpe836cECUhpRSlGgVS/doFkdAlXqwuIyj6HV9lChoBmgJaA9DCMhe7/54m3BAlIaUUpRoFU0JAWgWR0CVewjjJdSmdX2UKGgGaAloD0MIlfPF3ovbcECUhpRSlGgVTRUBaBZHQJV7ChkAggZ1fZQoaAZoCWgPQwizYU1lUU9xQJSGlFKUaBVL0mgWR0CVe/gBcRlIdX2UKGgGaAloD0MIWf0RhkFTcECUhpRSlGgVTakBaBZHQJV8xXgccVB1fZQoaAZoCWgPQwgFxCRcyOdCQJSGlFKUaBVL12gWR0CVfb4keIVNdX2UKGgGaAloD0MIvFruzISNcUCUhpRSlGgVTZUCaBZHQJV929bor4F1fZQoaAZoCWgPQwjgoSjQJ+pdQJSGlFKUaBVN6ANoFkdAlX4kF8ohIXV9lChoBmgJaA9DCDlHHR1Xf21AlIaUUpRoFUvkaBZHQJV+VNXYDkl1fZQoaAZoCWgPQwiu2F92zz5wQJSGlFKUaBVL/2gWR0CVf/M5OrQxdX2UKGgGaAloD0MIxQH0+/5BM0CUhpRSlGgVS85oFkdAlYCRoZhrnHV9lChoBmgJaA9DCKDGvfkN93BAlIaUUpRoFU0OAWgWR0CVgQ/BWPtEdX2UKGgGaAloD0MI0VrR5rghcECUhpRSlGgVS/NoFkdAlYKQf+0gKXV9lChoBmgJaA9DCDNrKSAtQHFAlIaUUpRoFUvpaBZHQJWDRvxYq5N1fZQoaAZoCWgPQwgzqDY4kfZwQJSGlFKUaBVLzGgWR0CVhA3LFGXpdX2UKGgGaAloD0MILQsm/iiYQUCUhpRSlGgVS8JoFkdAlYUspkPMCHV9lChoBmgJaA9DCKN2vwqwYXBAlIaUUpRoFU0GAWgWR0CVhYXO4XoDdX2UKGgGaAloD0MI1xael0oBcECUhpRSlGgVS9loFkdAlYXPReC04XV9lChoBmgJaA9DCDsBTYTNTnBAlIaUUpRoFU1KAWgWR0CVhtj7yhBadX2UKGgGaAloD0MIlbiOcUXbbkCUhpRSlGgVTRUBaBZHQJWIECyQgcN1fZQoaAZoCWgPQwiOWfYksPptQJSGlFKUaBVNEAFoFkdAlYiJuyeI23V9lChoBmgJaA9DCO1kcJR85nBAlIaUUpRoFUvqaBZHQJWI+tihFmZ1fZQoaAZoCWgPQwjajxSRYZNKQJSGlFKUaBVLzWgWR0CViRUs4DLbdX2UKGgGaAloD0MIpwUv+gozcECUhpRSlGgVTQcBaBZHQJWKtAhStNl1fZQoaAZoCWgPQwg2sFWCRTFxQJSGlFKUaBVL2WgWR0CVixpgkTpQdX2UKGgGaAloD0MIdZSD2UTBcECUhpRSlGgVS+doFkdAlY0RJRO1v3V9lChoBmgJaA9DCBQJppqZJHBAlIaUUpRoFUvzaBZHQJWPfhn8Koh1fZQoaAZoCWgPQwio5QeuslJxQJSGlFKUaBVNBwFoFkdAlZATxLCemXV9lChoBmgJaA9DCFrW/WOhx29AlIaUUpRoFUvoaBZHQJWQNNEgGKR1fZQoaAZoCWgPQwhCsKpefuVvQJSGlFKUaBVL5mgWR0CVkWXNTtLMdX2UKGgGaAloD0MIsmSO5d2ab0CUhpRSlGgVS+poFkdAlZIRri2lVXV9lChoBmgJaA9DCG9lic4ypV1AlIaUUpRoFU3oA2gWR0CVkijBl+VkdX2UKGgGaAloD0MIKa4q++6pcECUhpRSlGgVS+FoFkdAlZI2DUVi4XV9lChoBmgJaA9DCPFo44i13DNAlIaUUpRoFUvVaBZHQJWT9C4SYgJ1fZQoaAZoCWgPQwjaVUj5ydhsQJSGlFKUaBVL4WgWR0CVlovcafjCdX2UKGgGaAloD0MI0UAsm/l8ckCUhpRSlGgVTTMBaBZHQJWXgXHim2t1fZQoaAZoCWgPQwgew2M/iz5yQJSGlFKUaBVNiQFoFkdAlZlIcrAgxXV9lChoBmgJaA9DCE/JObEH8m5AlIaUUpRoFUvtaBZHQJWZa6mO2iN1fZQoaAZoCWgPQwiPxTapKDNwQJSGlFKUaBVL8GgWR0CVmjm+CbtrdX2UKGgGaAloD0MIuHcN+pLYcECUhpRSlGgVS9NoFkdAlZsQyylennV9lChoBmgJaA9DCOz5muVyRXFAlIaUUpRoFUvqaBZHQJWbQg4ffXR1fZQoaAZoCWgPQwgzVMVUulFxQJSGlFKUaBVNDQFoFkdAlZt2NNrTIHV9lChoBmgJaA9DCAA2IEJca25AlIaUUpRoFUvqaBZHQJWb78m8dxR1fZQoaAZoCWgPQwhRM6SK4sNdQJSGlFKUaBVN6ANoFkdAlZ337Hhjv3V9lChoBmgJaA9DCEVj7e9sEGJAlIaUUpRoFU3oA2gWR0CVnqdmg8KYdX2UKGgGaAloD0MIX5ULlT9kcECUhpRSlGgVS/VoFkdAlaG2qtHQQnV9lChoBmgJaA9DCNttF5rrfmRAlIaUUpRoFU3oA2gWR0CVouwsGxD9dX2UKGgGaAloD0MIj4zV5j84cUCUhpRSlGgVS/hoFkdAlaQTslb/wXV9lChoBmgJaA9DCLmMmxpo93FAlIaUUpRoFU2DAWgWR0CVpIDlYEGJdX2UKGgGaAloD0MIiBHCo81icECUhpRSlGgVS/BoFkdAlaSY0EX+EXV9lChoBmgJaA9DCFH6Qsh5nnFAlIaUUpRoFU1XAWgWR0CVpVJm/WUbdX2UKGgGaAloD0MIaeVeYFaMbUCUhpRSlGgVS/doFkdAlaWlkc0cfnV9lChoBmgJaA9DCJVliGNd5G1AlIaUUpRoFUv3aBZHQJWl9QHiWE91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 230, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5648944d0765a242309f397fc856034514f7ca6340f156c244edf928e0d02a71
3
+ size 144042
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1494199440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14941994d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1494199560>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14941995f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1494199680>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1494199710>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14941997a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1494199830>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14941998c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1494199950>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14941999e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f149416c4e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652215230.8778455,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFo/aD4KChC9BioPuxfqBjoQ9Xi+1ttJOgAAgD8AAIA/YMwNPiCfvT/YUvM+dihvvo4cMT4jD4I+AAAAAAAAAABA2m8+6nyLPxTSqT6PqRS/rSBWPtU7UDcAAAAAAAAAAFMvCj5IkYa8eB5/PTHzfj3Rz2m8OW+/uwAAgD8AAIA/bQtqPnwsIj+C9MY9Q9LKvgGY8z2TK169AAAAAAAAAADa2NA99oQkurJekDshQb02VYtkOTyesTUAAAAAAACAP41weT4u4rS8ick3O44ajrkZex++YGliugAAgD8AAIA/rcA1PkomDT5oUeK94CSAvr8lBL343QQ9AAAAAAAAAADNFWc+8KRcP/Jdtz7gsLO+A6KZPmfQlD0AAAAAAAAAAM1Qh70UJpy6IOsQNfwzJDDJCvi6gtdhtAAAgD8AAIA/mu3iO+/stT/mQi49Rhy6vVHM57sa0pI9AAAAAAAAAACaij49siKfP4OTWz6Dg/i+fuawPZD80D0AAAAAAAAAAHBygD63OGY/gaXHPgRe276NnbA+YJfLPQAAAAAAAAAATQWOvn+hrj4relk+ExqovvQna70f3Kk9AAAAAAAAAADzwNA9j442usKdwjdVxtexid2yu+Vv4rYAAIA/AACAP3Mqcj7sVOE8TJm3Og17fDkJiHg+980AugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIchQgCqbZcECUhpRSlIwBbJRNFAGMAXSUR0CU5ICEHt4SdX2UKGgGaAloD0MIZOsZwrGYb0CUhpRSlGgVTWMBaBZHQJTmP1wo9cN1fZQoaAZoCWgPQwhMwRpnUxFhQJSGlFKUaBVN6ANoFkdAlOZvwAlv63V9lChoBmgJaA9DCI+K/ztih3BAlIaUUpRoFU08AWgWR0CVUjXeWOZLdX2UKGgGaAloD0MIGt8Xlypwb0CUhpRSlGgVS/BoFkdAlVQ8SkCV8nV9lChoBmgJaA9DCBPVWwObsHBAlIaUUpRoFU0UAWgWR0CVVHQfZElWdX2UKGgGaAloD0MIwvf+Bq1gcUCUhpRSlGgVS8loFkdAlVUzYywfQ3V9lChoBmgJaA9DCG+bqRCPbnFAlIaUUpRoFU01AWgWR0CVVboicG1QdX2UKGgGaAloD0MIym5m9KMJcUCUhpRSlGgVTQABaBZHQJVXWvUz9CN1fZQoaAZoCWgPQwjQJRx6i2VxQJSGlFKUaBVNMAFoFkdAlVd1sguAZ3V9lChoBmgJaA9DCMEaZ9MRmnFAlIaUUpRoFU09A2gWR0CVV88qnWJ8dX2UKGgGaAloD0MIeCl1ybjJb0CUhpRSlGgVTRUBaBZHQJVYA6V+qip1fZQoaAZoCWgPQwg91/fhIJEkwJSGlFKUaBVLnGgWR0CVWDU83dbgdX2UKGgGaAloD0MI0vwxrU19b0CUhpRSlGgVS/FoFkdAlVnzKcNH6XV9lChoBmgJaA9DCHb/WIiOCnFAlIaUUpRoFU0TAWgWR0CVXW9hZyMldX2UKGgGaAloD0MIhBH7BFAMKsCUhpRSlGgVS8FoFkdAlV2hLkCFK3V9lChoBmgJaA9DCDM334huTGRAlIaUUpRoFU3oA2gWR0CVYiZBLPD6dX2UKGgGaAloD0MI0T/BxYpWYUCUhpRSlGgVTegDaBZHQJViqRPoFFF1fZQoaAZoCWgPQwgH7GryVF1wQJSGlFKUaBVL8WgWR0CVYs655JK8dX2UKGgGaAloD0MIePATB9AbckCUhpRSlGgVS/JoFkdAlWNQUDdP+HV9lChoBmgJaA9DCLngDP4+FnJAlIaUUpRoFU0FAWgWR0CVY/Kf4AS4dX2UKGgGaAloD0MIdEUpIRgqcUCUhpRSlGgVTRcBaBZHQJVkEYIjW091fZQoaAZoCWgPQwgQeGAAoZhxQJSGlFKUaBVNJwFoFkdAlWTMKTjebnV9lChoBmgJaA9DCJJ0zeQbV3JAlIaUUpRoFU0kAWgWR0CVZ01WsA/+dX2UKGgGaAloD0MIHAdeLTeGcUCUhpRSlGgVS9NoFkdAlWdZ6po9LnV9lChoBmgJaA9DCJ7vp8ZLLXFAlIaUUpRoFU3CAWgWR0CVabY3vQWvdX2UKGgGaAloD0MIuypQi8FlQUCUhpRSlGgVS8JoFkdAlWsmQOnVG3V9lChoBmgJaA9DCJWe6SVG129AlIaUUpRoFU02AWgWR0CVa4tbLU1AdX2UKGgGaAloD0MIuJBHcONIcUCUhpRSlGgVTUgCaBZHQJVsN4bCJoF1fZQoaAZoCWgPQwiiKNAncrJwQJSGlFKUaBVL7mgWR0CVbPl7tzCDdX2UKGgGaAloD0MIZ2DkZU2ycECUhpRSlGgVTQUBaBZHQJVtkAYHgP51fZQoaAZoCWgPQwjPTDCcK99xQJSGlFKUaBVL4WgWR0CVbZsWO6uodX2UKGgGaAloD0MIIbByaBFIcECUhpRSlGgVS9NoFkdAlW3bMkhRqHV9lChoBmgJaA9DCBGOWfbkbXBAlIaUUpRoFUv6aBZHQJVurDCP6sR1fZQoaAZoCWgPQwiwq8lTVkpuQJSGlFKUaBVNiQNoFkdAlXAwV0tAcHV9lChoBmgJaA9DCAagUbp0Em9AlIaUUpRoFUvaaBZHQJVweUTtb9t1fZQoaAZoCWgPQwgo02hycexwQJSGlFKUaBVNhAJoFkdAlXCfLcKw6nV9lChoBmgJaA9DCJjBGJHo7nBAlIaUUpRoFUvpaBZHQJVw8o3Jgb91fZQoaAZoCWgPQwjzHJHvEqlwQJSGlFKUaBVL9mgWR0CVc4u+AVfvdX2UKGgGaAloD0MIysABLd06ckCUhpRSlGgVS81oFkdAlXVAxnFo+XV9lChoBmgJaA9DCCIZcmy9rnBAlIaUUpRoFU0AAWgWR0CVdWhY/3WXdX2UKGgGaAloD0MIbk4lA0CnbkCUhpRSlGgVS+VoFkdAlXZCvC/Gl3V9lChoBmgJaA9DCCulZ3pJFHFAlIaUUpRoFU3kA2gWR0CVdlUlRgqmdX2UKGgGaAloD0MIh22LMhscJ0CUhpRSlGgVS6xoFkdAlXb8K5TZQHV9lChoBmgJaA9DCD3vxoICXXBAlIaUUpRoFUvxaBZHQJV3BZlnRLN1fZQoaAZoCWgPQwjTvU7qy9hvQJSGlFKUaBVNDgFoFkdAlXj952QnyHV9lChoBmgJaA9DCDD186aivnBAlIaUUpRoFU1LAWgWR0CVecNwzch1dX2UKGgGaAloD0MIaoXpe836cECUhpRSlGgVS/doFkdAlXqwuIyj6HV9lChoBmgJaA9DCMhe7/54m3BAlIaUUpRoFU0JAWgWR0CVewjjJdSmdX2UKGgGaAloD0MIlfPF3ovbcECUhpRSlGgVTRUBaBZHQJV7ChkAggZ1fZQoaAZoCWgPQwizYU1lUU9xQJSGlFKUaBVL0mgWR0CVe/gBcRlIdX2UKGgGaAloD0MIWf0RhkFTcECUhpRSlGgVTakBaBZHQJV8xXgccVB1fZQoaAZoCWgPQwgFxCRcyOdCQJSGlFKUaBVL12gWR0CVfb4keIVNdX2UKGgGaAloD0MIvFruzISNcUCUhpRSlGgVTZUCaBZHQJV929bor4F1fZQoaAZoCWgPQwjgoSjQJ+pdQJSGlFKUaBVN6ANoFkdAlX4kF8ohIXV9lChoBmgJaA9DCDlHHR1Xf21AlIaUUpRoFUvkaBZHQJV+VNXYDkl1fZQoaAZoCWgPQwiu2F92zz5wQJSGlFKUaBVL/2gWR0CVf/M5OrQxdX2UKGgGaAloD0MIxQH0+/5BM0CUhpRSlGgVS85oFkdAlYCRoZhrnHV9lChoBmgJaA9DCKDGvfkN93BAlIaUUpRoFU0OAWgWR0CVgQ/BWPtEdX2UKGgGaAloD0MI0VrR5rghcECUhpRSlGgVS/NoFkdAlYKQf+0gKXV9lChoBmgJaA9DCDNrKSAtQHFAlIaUUpRoFUvpaBZHQJWDRvxYq5N1fZQoaAZoCWgPQwgzqDY4kfZwQJSGlFKUaBVLzGgWR0CVhA3LFGXpdX2UKGgGaAloD0MILQsm/iiYQUCUhpRSlGgVS8JoFkdAlYUspkPMCHV9lChoBmgJaA9DCKN2vwqwYXBAlIaUUpRoFU0GAWgWR0CVhYXO4XoDdX2UKGgGaAloD0MI1xael0oBcECUhpRSlGgVS9loFkdAlYXPReC04XV9lChoBmgJaA9DCDsBTYTNTnBAlIaUUpRoFU1KAWgWR0CVhtj7yhBadX2UKGgGaAloD0MIlbiOcUXbbkCUhpRSlGgVTRUBaBZHQJWIECyQgcN1fZQoaAZoCWgPQwiOWfYksPptQJSGlFKUaBVNEAFoFkdAlYiJuyeI23V9lChoBmgJaA9DCO1kcJR85nBAlIaUUpRoFUvqaBZHQJWI+tihFmZ1fZQoaAZoCWgPQwjajxSRYZNKQJSGlFKUaBVLzWgWR0CViRUs4DLbdX2UKGgGaAloD0MIpwUv+gozcECUhpRSlGgVTQcBaBZHQJWKtAhStNl1fZQoaAZoCWgPQwg2sFWCRTFxQJSGlFKUaBVL2WgWR0CVixpgkTpQdX2UKGgGaAloD0MIdZSD2UTBcECUhpRSlGgVS+doFkdAlY0RJRO1v3V9lChoBmgJaA9DCBQJppqZJHBAlIaUUpRoFUvzaBZHQJWPfhn8Koh1fZQoaAZoCWgPQwio5QeuslJxQJSGlFKUaBVNBwFoFkdAlZATxLCemXV9lChoBmgJaA9DCFrW/WOhx29AlIaUUpRoFUvoaBZHQJWQNNEgGKR1fZQoaAZoCWgPQwhCsKpefuVvQJSGlFKUaBVL5mgWR0CVkWXNTtLMdX2UKGgGaAloD0MIsmSO5d2ab0CUhpRSlGgVS+poFkdAlZIRri2lVXV9lChoBmgJaA9DCG9lic4ypV1AlIaUUpRoFU3oA2gWR0CVkijBl+VkdX2UKGgGaAloD0MIKa4q++6pcECUhpRSlGgVS+FoFkdAlZI2DUVi4XV9lChoBmgJaA9DCPFo44i13DNAlIaUUpRoFUvVaBZHQJWT9C4SYgJ1fZQoaAZoCWgPQwjaVUj5ydhsQJSGlFKUaBVL4WgWR0CVlovcafjCdX2UKGgGaAloD0MI0UAsm/l8ckCUhpRSlGgVTTMBaBZHQJWXgXHim2t1fZQoaAZoCWgPQwgew2M/iz5yQJSGlFKUaBVNiQFoFkdAlZlIcrAgxXV9lChoBmgJaA9DCE/JObEH8m5AlIaUUpRoFUvtaBZHQJWZa6mO2iN1fZQoaAZoCWgPQwiPxTapKDNwQJSGlFKUaBVL8GgWR0CVmjm+CbtrdX2UKGgGaAloD0MIuHcN+pLYcECUhpRSlGgVS9NoFkdAlZsQyylennV9lChoBmgJaA9DCOz5muVyRXFAlIaUUpRoFUvqaBZHQJWbQg4ffXR1fZQoaAZoCWgPQwgzVMVUulFxQJSGlFKUaBVNDQFoFkdAlZt2NNrTIHV9lChoBmgJaA9DCAA2IEJca25AlIaUUpRoFUvqaBZHQJWb78m8dxR1fZQoaAZoCWgPQwhRM6SK4sNdQJSGlFKUaBVN6ANoFkdAlZ337Hhjv3V9lChoBmgJaA9DCEVj7e9sEGJAlIaUUpRoFU3oA2gWR0CVnqdmg8KYdX2UKGgGaAloD0MIX5ULlT9kcECUhpRSlGgVS/VoFkdAlaG2qtHQQnV9lChoBmgJaA9DCNttF5rrfmRAlIaUUpRoFU3oA2gWR0CVouwsGxD9dX2UKGgGaAloD0MIj4zV5j84cUCUhpRSlGgVS/hoFkdAlaQTslb/wXV9lChoBmgJaA9DCLmMmxpo93FAlIaUUpRoFU2DAWgWR0CVpIDlYEGJdX2UKGgGaAloD0MIiBHCo81icECUhpRSlGgVS/BoFkdAlaSY0EX+EXV9lChoBmgJaA9DCFH6Qsh5nnFAlIaUUpRoFU1XAWgWR0CVpVJm/WUbdX2UKGgGaAloD0MIaeVeYFaMbUCUhpRSlGgVS/doFkdAlaWlkc0cfnV9lChoBmgJaA9DCJVliGNd5G1AlIaUUpRoFUv3aBZHQJWl9QHiWE91ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 230,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0669718d4186d3d5d0002d1dd36dfbc22d9a773a9854db7833aa7c742192df4e
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dace6af5d9e2b50b87e935ffd141a0518001f81c89b9eb7f9500001854604fb
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:848a6742c0e41773885929dc94e6fe92e4d2868f58c6f4312174390ae1250bd4
3
+ size 228488
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 250.13588242764064, "std_reward": 16.417869235715482, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T21:03:17.987607"}