Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/_stable_baselines3_version +1 -1
- ppo-LunarLander-v2/data +49 -48
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +6 -6
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -111.11 +/- 38.22
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8d9a5f53a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8d9a5f5430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8d9a5f54c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8d9a5f5550>", "_build": "<function ActorCriticPolicy._build at 0x7f8d9a5f55e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8d9a5f5670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8d9a5f5700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8d9a5f5790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8d9a5f5820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8d9a5f58b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8d9a5f5940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8d9a5f59d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8d9a5f4b40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680551803107424675, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAHoSBr5ORoY/jRe+vX1v3r7jtmW+qNecPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImYHK+PeAa0CUhpRSlIwBbJRNQQGMAXSUR0CjgzzsyBTXdX2UKGgGaAloD0MIZeQs7GlOcECUhpRSlGgVTU8BaBZHQKOFCKYzBRB1fZQoaAZoCWgPQwjds67RcsxaQJSGlFKUaBVN6ANoFkdAo4mhq9GqgnV9lChoBmgJaA9DCNMtO8R/PnJAlIaUUpRoFU1kAWgWR0CjitFGgBcSdX2UKGgGaAloD0MI/bypSAUlckCUhpRSlGgVTSoBaBZHQKOLx9/jKgZ1fZQoaAZoCWgPQwjaqbncIGtwQJSGlFKUaBVNVgFoFkdAo40Oskpqh3V9lChoBmgJaA9DCCWTUztDrG9AlIaUUpRoFU0uAWgWR0Cjjp31jAi3dX2UKGgGaAloD0MIn8iTpOtmcUCUhpRSlGgVTSYBaBZHQKOPmrOJLuh1fZQoaAZoCWgPQwhzDp4JzY1xQJSGlFKUaBVNLAFoFkdAo5CqTyJ9A3V9lChoBmgJaA9DCClZTkLp5m9AlIaUUpRoFU0uAWgWR0CjkjbX6InCdX2UKGgGaAloD0MIvk9VoQGlcECUhpRSlGgVTVcBaBZHQKOTulGgBcR1fZQoaAZoCWgPQwiMSuoE9BdwQJSGlFKUaBVNOgFoFkdAo5Ui6DoQnXV9lChoBmgJaA9DCIXsvI1Nkm1AlIaUUpRoFU02AWgWR0Cjl2NXxOLzdX2UKGgGaAloD0MImgrxSPwGcECUhpRSlGgVTTcBaBZHQKOY8fYBeX11fZQoaAZoCWgPQwiC4seYOy5wQJSGlFKUaBVNXAFoFkdAo5rA6Oo5xXV9lChoBmgJaA9DCK6f/rMmJHFAlIaUUpRoFU1BAWgWR0CjnIUyP+4tdX2UKGgGaAloD0MITdnpB/VucUCUhpRSlGgVTSQBaBZHQKOdef8Muvl1fZQoaAZoCWgPQwhzSkBMAhhxQJSGlFKUaBVNLQFoFkdAo55zhegL7XV9lChoBmgJaA9DCBGN7iD2dG1AlIaUUpRoFU0bAWgWR0Cjn2SYXwb3dX2UKGgGaAloD0MILei9MQThcUCUhpRSlGgVTX0BaBZHQKOhSc3EQ5F1fZQoaAZoCWgPQwjDnQsjvTQ8QJSGlFKUaBVLq2gWR0CjodWphnandX2UKGgGaAloD0MI2CrB4nBlckCUhpRSlGgVTR0BaBZHQKOizzfaYeF1fZQoaAZoCWgPQwip9ul4zCRKQJSGlFKUaBVLpGgWR0Cjo1H2ys0YdX2UKGgGaAloD0MIGsIxy54sXkCUhpRSlGgVTegDaBZHQKOnn3xnWat1fZQoaAZoCWgPQwhSKAtf38NyQJSGlFKUaBVNKgFoFkdAo6kZJmNBGHV9lChoBmgJaA9DCMh9q3Xi6jZAlIaUUpRoFUvPaBZHQKOpuMc6vJR1fZQoaAZoCWgPQwjqJFtdDnJyQJSGlFKUaBVNIgFoFkdAo6qd3+uNgnV9lChoBmgJaA9DCF392CS//25AlIaUUpRoFU0jAWgWR0Cjq5wPRRdhdX2UKGgGaAloD0MIGZKTiduObkCUhpRSlGgVTTQBaBZHQKOtPWfbsWx1fZQoaAZoCWgPQwhselBQCp1wQJSGlFKUaBVNJQFoFkdAo64wLG7z1HV9lChoBmgJaA9DCDTXaaSln3BAlIaUUpRoFU0PAWgWR0CjrxqfOD8MdX2UKGgGaAloD0MI4Xmp2JhZb0CUhpRSlGgVTTUBaBZHQKOxN0qYqoZ1fZQoaAZoCWgPQwjiqx3FOc9xQJSGlFKUaBVNKgFoFkdAo7KbVpblinV9lChoBmgJaA9DCDi6SndXkG1AlIaUUpRoFU0qAWgWR0CjtAzqbBoFdX2UKGgGaAloD0MI/tXjvtXMT0CUhpRSlGgVS7hoFkdAo7TlY4hllXV9lChoBmgJaA9DCJOq7SZ4XnBAlIaUUpRoFU0oAWgWR0Cjt0V7pmmMdX2UKGgGaAloD0MI7Q2+MJk4Y0CUhpRSlGgVTegDaBZHQKO7yNtIkJN1fZQoaAZoCWgPQwiD+pY53ZFxQJSGlFKUaBVNHwFoFkdAo7zZC+lCTnV9lChoBmgJaA9DCFjLnZlg3HBAlIaUUpRoFU07AWgWR0CjvedpZfUndX2UKGgGaAloD0MIR4/f2/QpbkCUhpRSlGgVTTYBaBZHQKO/h86V+ql1fZQoaAZoCWgPQwilTdU9cmlwQJSGlFKUaBVL72gWR0CjwEw04zacdX2UKGgGaAloD0MI6+V3msxfcUCUhpRSlGgVTSwBaBZHQKPBQ/lhgE51fZQoaAZoCWgPQwjs98Q6VURiQJSGlFKUaBVN6ANoFkdAo8WzvRZ2ZHV9lChoBmgJaA9DCGGqmbUUZnFAlIaUUpRoFU0jAWgWR0CjxqQudwvQdX2UKGgGaAloD0MIWn7gKk+fcECUhpRSlGgVTScBaBZHQKPIJeXRgJF1fZQoaAZoCWgPQwicw7Xaw75qQJSGlFKUaBVNEwFoFkdAo8kFZq20A3V9lChoBmgJaA9DCHycacJ2/HFAlIaUUpRoFU0JAWgWR0CjyeNBWxQjdX2UKGgGaAloD0MIe8A8ZMqVSUCUhpRSlGgVS8loFkdAo8qE0elsQHV9lChoBmgJaA9DCKck63D0KW5AlIaUUpRoFU0bAWgWR0Cjy/acZtN0dX2UKGgGaAloD0MIl8lwPB9vbECUhpRSlGgVTQgBaBZHQKPNB7w8W9F1fZQoaAZoCWgPQwj9ZmK6ELhvQJSGlFKUaBVNQQFoFkdAo85kwQDmsHV9lChoBmgJaA9DCFBQilbu8UVAlIaUUpRoFUujaBZHQKPPD5DZ13d1fZQoaAZoCWgPQwhsByP2iQVxQJSGlFKUaBVNSAFoFkdAo9FVbu+h5HV9lChoBmgJaA9DCH1Yb9RKoHBAlIaUUpRoFU0OAWgWR0Cj0pDmr8zidX2UKGgGaAloD0MID+85sFxKcUCUhpRSlGgVS/doFkdAo9O8kMTewnV9lChoBmgJaA9DCLmpgeZzk3FAlIaUUpRoFU08AWgWR0Cj1Sa9kBjndX2UKGgGaAloD0MIXkpdMo7+cECUhpRSlGgVS/loFkdAo9aHCoCMgnV9lChoBmgJaA9DCEsBaf/DAnBAlIaUUpRoFUv2aBZHQKPXUmsNlRR1fZQoaAZoCWgPQwgRixh2WMVxQJSGlFKUaBVNHAFoFkdAo9g0bxVhkXV9lChoBmgJaA9DCBXEQNe+KG1AlIaUUpRoFU0ZAWgWR0Cj2SmgBcRldX2UKGgGaAloD0MIVaUtrvHFRkCUhpRSlGgVS8ZoFkdAo9pZAIIF/3V9lChoBmgJaA9DCFnaqbncOk5AlIaUUpRoFUvWaBZHQKPbBE2HclB1fZQoaAZoCWgPQwjBHhMpTTxwQJSGlFKUaBVNJgFoFkdAo9v3oV2zOXV9lChoBmgJaA9DCG2sxDyr2WxAlIaUUpRoFU0YAWgWR0Cj3OlXJYDDdX2UKGgGaAloD0MIJEc6A+NIcECUhpRSlGgVTScBaBZHQKPea1wYLst1fZQoaAZoCWgPQwjKxRhYxztTQJSGlFKUaBVLt2gWR0Cj3vvRJEpidX2UKGgGaAloD0MII2b2eYwfbUCUhpRSlGgVTQoBaBZHQKPf0cy31Bd1fZQoaAZoCWgPQwhnmxvTk51yQJSGlFKUaBVNTwFoFkdAo+DrmnwXqXV9lChoBmgJaA9DCGu5MxNMc3BAlIaUUpRoFU1wAmgWR0Cj46ueSSvDdX2UKGgGaAloD0MIf6MdN3z/cECUhpRSlGgVTQsBaBZHQKPkjJBgNPR1fZQoaAZoCWgPQwhQVgxXB9trQJSGlFKUaBVNDAFoFkdAo+Xz3j+72HV9lChoBmgJaA9DCIC21ayzCm9AlIaUUpRoFU1tAWgWR0Cj5yiiRGMGdX2UKGgGaAloD0MI5L1qZYIMcUCUhpRSlGgVTTABaBZHQKPoMTakAPx1fZQoaAZoCWgPQwiBXOLIQ5VyQJSGlFKUaBVNBAFoFkdAo+nCBmPHUHV9lChoBmgJaA9DCIOKql/pIEhAlIaUUpRoFUvlaBZHQKPquLRa5gB1fZQoaAZoCWgPQwg1lrA2BgJyQJSGlFKUaBVL7GgWR0Cj68axPfsNdX2UKGgGaAloD0MIgjY5fNJ0b0CUhpRSlGgVTSgBaBZHQKPtHtLteD51fZQoaAZoCWgPQwgapUv/kjQdQJSGlFKUaBVL2WgWR0Cj7hmJm/WUdX2UKGgGaAloD0MIrWhznBtYcUCUhpRSlGgVTQcBaBZHQKPwKv24/eN1fZQoaAZoCWgPQwiTj90FyqRtQJSGlFKUaBVNEQFoFkdAo/F9ZFG5MHV9lChoBmgJaA9DCEomp3YGoHBAlIaUUpRoFU04AWgWR0Cj8q0IsyzpdX2UKGgGaAloD0MI86s5QLADbkCUhpRSlGgVTSgBaBZHQKP0NjEvTPV1fZQoaAZoCWgPQwh+GvfmN2BJQJSGlFKUaBVL0GgWR0Cj9Nsoc7yQdX2UKGgGaAloD0MIB8+EJsl5ckCUhpRSlGgVTRsBaBZHQKP1z9ycTal1fZQoaAZoCWgPQwh72AsFbB1tQJSGlFKUaBVNHgFoFkdAo/a84gieNHV9lChoBmgJaA9DCLlxi/l5cnBAlIaUUpRoFU0uAWgWR0Cj+Eu3trsTdX2UKGgGaAloD0MI7nppioD3bECUhpRSlGgVTRcBaBZHQKP5ONKAavR1fZQoaAZoCWgPQwgFFsCUATBvQJSGlFKUaBVNLQFoFkdAo/pRnDiwS3V9lChoBmgJaA9DCDJyFva0Ez5AlIaUUpRoFUveaBZHQKP7CZWq95B1fZQoaAZoCWgPQwjqkQa3NbNsQJSGlFKUaBVNHAFoFkdAo/yFJz1bq3V9lChoBmgJaA9DCCNozCRqQXJAlIaUUpRoFUvxaBZHQKP9UY+B6KN1fZQoaAZoCWgPQwjhfyvZsXtOQJSGlFKUaBVLwWgWR0Cj/eaIvalDdX2UKGgGaAloD0MIXRq/8IqNckCUhpRSlGgVTRMBaBZHQKP+yn6VMVV1fZQoaAZoCWgPQwhDVUylH4RxQJSGlFKUaBVNLwFoFkdApABhDE3sHHV9lChoBmgJaA9DCPJdSl0yLm5AlIaUUpRoFU0WAWgWR0CkAUjurp7kdX2UKGgGaAloD0MISPq0iv7HbUCUhpRSlGgVTV0BaBZHQKQCeZv1lGx1fZQoaAZoCWgPQwim1vuN9nFuQJSGlFKUaBVNPAFoFkdApAQf9m6GxnV9lChoBmgJaA9DCNYCe0wk029AlIaUUpRoFU0gAWgWR0CkBQu0TlDGdX2UKGgGaAloD0MIXaRQFr7bcUCUhpRSlGgVTQ8BaBZHQKQF9ZAY51h1fZQoaAZoCWgPQwj0aoDSUIBxQJSGlFKUaBVNJAFoFkdApAc/lCCz1XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d59edc1ac20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d59edc1acb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d59edc1ad40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d59edc1add0>", "_build": "<function ActorCriticPolicy._build at 0x7d59edc1ae60>", "forward": "<function ActorCriticPolicy.forward at 0x7d59edc1aef0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d59edc1af80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d59edc1d050>", "_predict": "<function ActorCriticPolicy._predict at 0x7d59edc1d0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d59edc1d170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d59edc1d200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d59edc1d290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7d59edc6c540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681287658675341179, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzfgAPuwLnT9I/dI+dpAMvwmIZ77IN4K+AAAAAAAAAADqzIc+yIiwP00GQj90NGe+/9NIvkZwBb4AAAAAAAAAAA621L5BTuQ+6DH1vrDGj7814gE+dWY4PgAAAAAAAAAAhgWdPvGamT6m6bw+Sv6rv4R8+z1NAKo+AAAAAAAAAAB7DaK+/IqiP3yyQb9L6e6+ngatO9YErDwAAAAAAAAAALpIFT5Thp8/WUabPhzs/L4XKuo9C70xPgAAAAAAAAAApsXQPX6hjD4VqZu6r4SvvyrIAj84UHk+AAAAAAAAAADVbri+M6i2P96iNb8V1we/NlcKP4QAnT0AAAAAAAAAAAC2Yz0oKLo/Bx9JPzkQVT6AOpC9aXoLvgAAAAAAAAAAZgB3vPdrbT+mScM71kREvzp0SL6lFZe9AAAAAAAAAACTQH0+9w9dP0c9PT9ktH+/Dyd2vSM++z0AAAAAAAAAAGZAyLw6a40/Emq2vfNmK79uM6E8Gt6nPQAAAAAAAAAAzZZQPSrCuT+arMw+qb8ePVViD76r3nS+AAAAAAAAAACdLv2+DzVmP0Apab90t0i/63eHPlLqmL0AAAAAAAAAAGa5AL0OQak/lvhtvmJ/475tBFE8NT2kvQAAAAAAAAAAzbqwvIqStT9OfuO+m1VvPHxzvTzlj/89AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU5W2uMbYW8CUhpRSlIwBbJRLSYwBdJRHQAH3t0FKTSt1fZQoaAZoCWgPQwjChxIteSBUwJSGlFKUaBVLYGgWR0ACDi83++/QdX2UKGgGaAloD0MIr5Y7M0EgbcCUhpRSlGgVS1JoFkdAAjPPcBU70XV9lChoBmgJaA9DCP0QGyycVFjAlIaUUpRoFUtKaBZHQAJIFFDv3Jx1fZQoaAZoCWgPQwh1djI4SvddwJSGlFKUaBVLdmgWR0ACSLXL/0dzdX2UKGgGaAloD0MIgPRNmgayZMCUhpRSlGgVS2ZoFkdAAl8gIQe3hHV9lChoBmgJaA9DCHXniefsNmrAlIaUUpRoFUtqaBZHQAK0euFHrhR1fZQoaAZoCWgPQwiZuFUQA29cwJSGlFKUaBVLWWgWR0AC5eE7GNrCdX2UKGgGaAloD0MIGy5yT1enWsCUhpRSlGgVS1hoFkdAAyLG7z06HXV9lChoBmgJaA9DCFHc8SY/f2fAlIaUUpRoFUtmaBZHQAOIRh+fAbh1fZQoaAZoCWgPQwiqSIWxhb5ewJSGlFKUaBVLPmgWR0ADmQSzw+dLdX2UKGgGaAloD0MIIlM+BFUPRsCUhpRSlGgVS1hoFkdAA9UPxx1gY3V9lChoBmgJaA9DCINqgxPRRnDAlIaUUpRoFUtjaBZHQAPyqlxffGd1fZQoaAZoCWgPQwgVjiCV4tt0wJSGlFKUaBVLbGgWR0AEBhWo3rD7dX2UKGgGaAloD0MIAHUDBd4FS8CUhpRSlGgVS0FoFkdABATewcHW0HV9lChoBmgJaA9DCDHO34RCnETAlIaUUpRoFUtDaBZHQASBw2l2vB91fZQoaAZoCWgPQwg1XyUfu7lTwJSGlFKUaBVLS2gWR0AEfzjFQ2uQdX2UKGgGaAloD0MIQrEVNC0hVcCUhpRSlGgVS1FoFkdABMgTRIBikXV9lChoBmgJaA9DCIOj5NU5DFvAlIaUUpRoFUtbaBZHQAVWUB4lhPV1fZQoaAZoCWgPQwhYIHpSZlh9wJSGlFKUaBVLXmgWR0AFiveP7vXtdX2UKGgGaAloD0MI6LtbWaLMUMCUhpRSlGgVS1FoFkdABatBfKISDnV9lChoBmgJaA9DCJKSHobWwGTAlIaUUpRoFUtnaBZHQAWzhxYJVsF1fZQoaAZoCWgPQwjy6bEtgw9wwJSGlFKUaBVLe2gWR0AF1DneSB9UdX2UKGgGaAloD0MIX7LxYAvfbcCUhpRSlGgVS0toFkdABiPjn3cpLHV9lChoBmgJaA9DCL5Nf/Zj5HPAlIaUUpRoFUtLaBZHQAY1EVnEl3R1fZQoaAZoCWgPQwjfap24HGZUwJSGlFKUaBVLYWgWR0AGd5MURFqjdX2UKGgGaAloD0MIRYMUPIUIW8CUhpRSlGgVS1JoFkdABtWbPQfIS3V9lChoBmgJaA9DCHjy6bEtRl7AlIaUUpRoFUuAaBZHQAcRe1KGtZF1fZQoaAZoCWgPQwhr14S0hmp0wJSGlFKUaBVLXmgWR0AHLzRQaaTfdX2UKGgGaAloD0MIlWQdji4oYMCUhpRSlGgVS2FoFkdABy0eEIw/PnV9lChoBmgJaA9DCHWxaaUQEFfAlIaUUpRoFUs8aBZHQAdhnJ1aGHp1fZQoaAZoCWgPQwjMDYY6rCNiwJSGlFKUaBVLcmgWR0AH5nlGPPszdX2UKGgGaAloD0MId0gxQCJxdMCUhpRSlGgVS2RoFkdAB+atLcsUZnV9lChoBmgJaA9DCCLGa17VwFPAlIaUUpRoFUtHaBZHQAfx0uDjBEd1fZQoaAZoCWgPQwi4lPPF3tdWwJSGlFKUaBVLeWgWR0AIsA93bEgodX2UKGgGaAloD0MI9pZyvpiOeMCUhpRSlGgVS1loFkdACUj9GZuyeXV9lChoBmgJaA9DCFSOyeJ+bnTAlIaUUpRoFUuEaBZHQAlm4qgAZKp1fZQoaAZoCWgPQwiXOzPB8DtzwJSGlFKUaBVLbWgWR0AJi4e9zwMIdX2UKGgGaAloD0MIdXPxtz0QW8CUhpRSlGgVS2toFkdACZ4cFQl8gXV9lChoBmgJaA9DCLaDEfsEDFnAlIaUUpRoFUtfaBZHQAnv1lGwzLx1fZQoaAZoCWgPQwi/fogNFkpiwJSGlFKUaBVLUmgWR0AKPtUn5SFXdX2UKGgGaAloD0MIZan1fqOIW8CUhpRSlGgVS3RoFkdAClucc2itaXV9lChoBmgJaA9DCP7Soj7JiFzAlIaUUpRoFUtXaBZHQAqoGIKtxMp1fZQoaAZoCWgPQwhDU3b6QfB1wJSGlFKUaBVLi2gWR0AKtC/oJRfndX2UKGgGaAloD0MIRWXDmsqbfcCUhpRSlGgVS2hoFkdACuqNIbwSanV9lChoBmgJaA9DCKIm+nyUKGbAlIaUUpRoFUtraBZHQAskNnXd0q91fZQoaAZoCWgPQwgWTWcng+hWwJSGlFKUaBVLeGgWR0ALQYk3S8aodX2UKGgGaAloD0MIRUseT8tzQUCUhpRSlGgVS11oFkdAC3PjXFtKqXV9lChoBmgJaA9DCKkXfJqTvyBAlIaUUpRoFUtraBZHQAvwqI7/4qR1fZQoaAZoCWgPQwgibk4lgxpjwJSGlFKUaBVLQWgWR0AL/dRBNVR2dX2UKGgGaAloD0MIKUF/oUdLbMCUhpRSlGgVS25oFkdADBcMVk+X7nV9lChoBmgJaA9DCEW7Cik/RlLAlIaUUpRoFUtdaBZHQAw2EsasIVx1fZQoaAZoCWgPQwi8kA4PYehvwJSGlFKUaBVLXWgWR0AMvgxagVXWdX2UKGgGaAloD0MImlyMgXXnaMCUhpRSlGgVS09oFkdADL4+KTB68nV9lChoBmgJaA9DCNobfGEyJ1vAlIaUUpRoFUs+aBZHQAzXVbzK9wp1fZQoaAZoCWgPQwhQqn063oB2wJSGlFKUaBVLWWgWR0ANX5N47ihndX2UKGgGaAloD0MI3GYqxCNBXMCUhpRSlGgVS2loFkdADWmdiDujRHV9lChoBmgJaA9DCBr4UQ37LFXAlIaUUpRoFUtKaBZHQA2FqJuVHFx1fZQoaAZoCWgPQwhmFqHYCrV5wJSGlFKUaBVLUGgWR0ANhgZ0jkdWdX2UKGgGaAloD0MIGqIKf4ZXYcCUhpRSlGgVS3BoFkdADYcYIjW07nV9lChoBmgJaA9DCFTiOsYV/27AlIaUUpRoFUtNaBZHQA4ZB9kSVW11fZQoaAZoCWgPQwj3kPC9v2NWwJSGlFKUaBVLUWgWR0AOD+glF+d9dX2UKGgGaAloD0MITkS/tn7VW8CUhpRSlGgVS0NoFkdADmEzO5avBHV9lChoBmgJaA9DCGSUZ14O4WbAlIaUUpRoFUtkaBZHQA6oJiRW9151fZQoaAZoCWgPQwgVkWEVb59dwJSGlFKUaBVLU2gWR0AO4RIz3yqddX2UKGgGaAloD0MIImx4eqXlX8CUhpRSlGgVS4NoFkdADvx/d69kBnV9lChoBmgJaA9DCCnpYWh1eVXAlIaUUpRoFUtAaBZHQA8cDKYAsCl1fZQoaAZoCWgPQwjuz0VDxqdPwJSGlFKUaBVLPWgWR0APiX6ZYxL1dX2UKGgGaAloD0MInUfF/11fdMCUhpRSlGgVS2NoFkdAD6dfb9If83V9lChoBmgJaA9DCDsdyHpq9FrAlIaUUpRoFUtXaBZHQA/Nx+8XenB1fZQoaAZoCWgPQwgOvcXDO2F2wJSGlFKUaBVLX2gWR0AQCcEvCdjHdX2UKGgGaAloD0MIHHqLh/eIVsCUhpRSlGgVS0toFkdAEBZ+QU5+6XV9lChoBmgJaA9DCJoGRfMAYk7AlIaUUpRoFUtDaBZHQBBHB+F10T11fZQoaAZoCWgPQwhN9zqpL092wJSGlFKUaBVLW2gWR0AQWmaYu01JdX2UKGgGaAloD0MIJjeKrLVJacCUhpRSlGgVS4hoFkdAEGSIgvDgqHV9lChoBmgJaA9DCO0t5XwROYLAlIaUUpRoFUtnaBZHQBCasIVuaWp1fZQoaAZoCWgPQwjNzqJ3KtliwJSGlFKUaBVLbGgWR0AQsrEtNBWxdX2UKGgGaAloD0MIFTyFXKkuXcCUhpRSlGgVS1NoFkdAEQwGGEf1YnV9lChoBmgJaA9DCOUK73IRx0PAlIaUUpRoFUtLaBZHQBE19Wp6yB11fZQoaAZoCWgPQwjDKAgeH3N2wJSGlFKUaBVLbmgWR0ARNlqagElmdX2UKGgGaAloD0MIVtP1RNdFGMCUhpRSlGgVS3loFkdAEUASFoL5RHV9lChoBmgJaA9DCObpXFGKaHnAlIaUUpRoFUtlaBZHQBFMhC+lCTl1fZQoaAZoCWgPQwjWbyamCylRwJSGlFKUaBVLVWgWR0ARWcEvCdjHdX2UKGgGaAloD0MIGmoUkkxDbcCUhpRSlGgVS2xoFkdAEXmIj4YaYXV9lChoBmgJaA9DCEH1DyKZl2nAlIaUUpRoFUs/aBZHQBGDb8FY+0R1fZQoaAZoCWgPQwhOmDCalfFhwJSGlFKUaBVLT2gWR0ARh+RYA80UdX2UKGgGaAloD0MI4+DSMWcUYsCUhpRSlGgVS39oFkdAEahJAdGRWHV9lChoBmgJaA9DCKGi6lc6gFbAlIaUUpRoFUtTaBZHQBHknCwbEP11fZQoaAZoCWgPQwj44LVLGylZwJSGlFKUaBVLSmgWR0ASCzOX3QD3dX2UKGgGaAloD0MIBrggW5YLU8CUhpRSlGgVSzxoFkdAEibHIZIg/3V9lChoBmgJaA9DCE2EDU+vrmnAlIaUUpRoFUuAaBZHQBI/vWpZOi51fZQoaAZoCWgPQwjAeAYNfQV2wJSGlFKUaBVLeWgWR0ASTSE12q1gdX2UKGgGaAloD0MI0PHR4owrdMCUhpRSlGgVS3FoFkdAElRLsa86FXV9lChoBmgJaA9DCMHG9e/64ljAlIaUUpRoFUtBaBZHQBJircTJyQx1fZQoaAZoCWgPQwjFjVvMz8pVwJSGlFKUaBVLP2gWR0ASbA9FF2FGdX2UKGgGaAloD0MIZw3eV2XJZcCUhpRSlGgVS0RoFkdAEnEORT0g83V9lChoBmgJaA9DCEoKLIApQxPAlIaUUpRoFUtIaBZHQBK/AGjbi6x1fZQoaAZoCWgPQwiI9UatMMdWwJSGlFKUaBVLVmgWR0ASyJ79hqj8dX2UKGgGaAloD0MIFJSilXtjXcCUhpRSlGgVS35oFkdAEuIpH7P6bnV9lChoBmgJaA9DCF7WxAJfqV/AlIaUUpRoFUtHaBZHQBLoXwb2lEZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Thu Apr 6 11:02:12 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.8.0", "PyTorch": "1.13.0+cpu", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cc7f7098dcede1f6ff30fa8e4782417dcbabc8bad44bb1b4085880533f4b33b
|
3 |
+
size 146835
|
ppo-LunarLander-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2/data
CHANGED
@@ -1,82 +1,83 @@
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
-
":serialized:": "
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"
|
25 |
-
|
26 |
-
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
-
"dtype": "float32",
|
28 |
-
"_shape": [
|
29 |
-
8
|
30 |
-
],
|
31 |
-
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
-
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
-
"bounded_below": "[False False False False False False False False]",
|
34 |
-
"bounded_above": "[False False False False False False False False]",
|
35 |
-
"_np_random": null
|
36 |
-
},
|
37 |
-
"action_space": {
|
38 |
-
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
-
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
-
"n": 4,
|
41 |
-
"_shape": [],
|
42 |
-
"dtype": "int64",
|
43 |
-
"_np_random": null
|
44 |
-
},
|
45 |
-
"n_envs": 1,
|
46 |
-
"num_timesteps": 1000448,
|
47 |
-
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
-
":serialized:": "
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -
|
|
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
-
":serialized:": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
},
|
79 |
-
"
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
@@ -84,10 +85,10 @@
|
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d59edc1ac20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d59edc1acb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d59edc1ad40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d59edc1add0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d59edc1ae60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d59edc1aef0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d59edc1af80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d59edc1d050>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d59edc1d0e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d59edc1d170>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d59edc1d200>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d59edc1d290>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7d59edc6c540>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 1000,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1681287658675341179,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzfgAPuwLnT9I/dI+dpAMvwmIZ77IN4K+AAAAAAAAAADqzIc+yIiwP00GQj90NGe+/9NIvkZwBb4AAAAAAAAAAA621L5BTuQ+6DH1vrDGj7814gE+dWY4PgAAAAAAAAAAhgWdPvGamT6m6bw+Sv6rv4R8+z1NAKo+AAAAAAAAAAB7DaK+/IqiP3yyQb9L6e6+ngatO9YErDwAAAAAAAAAALpIFT5Thp8/WUabPhzs/L4XKuo9C70xPgAAAAAAAAAApsXQPX6hjD4VqZu6r4SvvyrIAj84UHk+AAAAAAAAAADVbri+M6i2P96iNb8V1we/NlcKP4QAnT0AAAAAAAAAAAC2Yz0oKLo/Bx9JPzkQVT6AOpC9aXoLvgAAAAAAAAAAZgB3vPdrbT+mScM71kREvzp0SL6lFZe9AAAAAAAAAACTQH0+9w9dP0c9PT9ktH+/Dyd2vSM++z0AAAAAAAAAAGZAyLw6a40/Emq2vfNmK79uM6E8Gt6nPQAAAAAAAAAAzZZQPSrCuT+arMw+qb8ePVViD76r3nS+AAAAAAAAAACdLv2+DzVmP0Apab90t0i/63eHPlLqmL0AAAAAAAAAAGa5AL0OQak/lvhtvmJ/475tBFE8NT2kvQAAAAAAAAAAzbqwvIqStT9OfuO+m1VvPHxzvTzlj/89AAAAAAAAAACUdJRiLg=="
|
39 |
},
|
40 |
"_last_episode_starts": {
|
41 |
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
43 |
},
|
44 |
"_last_original_obs": null,
|
45 |
"_episode_num": 0,
|
46 |
"use_sde": false,
|
47 |
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -15.384,
|
49 |
+
"_stats_window_size": 100,
|
50 |
"ep_info_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU5W2uMbYW8CUhpRSlIwBbJRLSYwBdJRHQAH3t0FKTSt1fZQoaAZoCWgPQwjChxIteSBUwJSGlFKUaBVLYGgWR0ACDi83++/QdX2UKGgGaAloD0MIr5Y7M0EgbcCUhpRSlGgVS1JoFkdAAjPPcBU70XV9lChoBmgJaA9DCP0QGyycVFjAlIaUUpRoFUtKaBZHQAJIFFDv3Jx1fZQoaAZoCWgPQwh1djI4SvddwJSGlFKUaBVLdmgWR0ACSLXL/0dzdX2UKGgGaAloD0MIgPRNmgayZMCUhpRSlGgVS2ZoFkdAAl8gIQe3hHV9lChoBmgJaA9DCHXniefsNmrAlIaUUpRoFUtqaBZHQAK0euFHrhR1fZQoaAZoCWgPQwiZuFUQA29cwJSGlFKUaBVLWWgWR0AC5eE7GNrCdX2UKGgGaAloD0MIGy5yT1enWsCUhpRSlGgVS1hoFkdAAyLG7z06HXV9lChoBmgJaA9DCFHc8SY/f2fAlIaUUpRoFUtmaBZHQAOIRh+fAbh1fZQoaAZoCWgPQwiqSIWxhb5ewJSGlFKUaBVLPmgWR0ADmQSzw+dLdX2UKGgGaAloD0MIIlM+BFUPRsCUhpRSlGgVS1hoFkdAA9UPxx1gY3V9lChoBmgJaA9DCINqgxPRRnDAlIaUUpRoFUtjaBZHQAPyqlxffGd1fZQoaAZoCWgPQwgVjiCV4tt0wJSGlFKUaBVLbGgWR0AEBhWo3rD7dX2UKGgGaAloD0MIAHUDBd4FS8CUhpRSlGgVS0FoFkdABATewcHW0HV9lChoBmgJaA9DCDHO34RCnETAlIaUUpRoFUtDaBZHQASBw2l2vB91fZQoaAZoCWgPQwg1XyUfu7lTwJSGlFKUaBVLS2gWR0AEfzjFQ2uQdX2UKGgGaAloD0MIQrEVNC0hVcCUhpRSlGgVS1FoFkdABMgTRIBikXV9lChoBmgJaA9DCIOj5NU5DFvAlIaUUpRoFUtbaBZHQAVWUB4lhPV1fZQoaAZoCWgPQwhYIHpSZlh9wJSGlFKUaBVLXmgWR0AFiveP7vXtdX2UKGgGaAloD0MI6LtbWaLMUMCUhpRSlGgVS1FoFkdABatBfKISDnV9lChoBmgJaA9DCJKSHobWwGTAlIaUUpRoFUtnaBZHQAWzhxYJVsF1fZQoaAZoCWgPQwjy6bEtgw9wwJSGlFKUaBVLe2gWR0AF1DneSB9UdX2UKGgGaAloD0MIX7LxYAvfbcCUhpRSlGgVS0toFkdABiPjn3cpLHV9lChoBmgJaA9DCL5Nf/Zj5HPAlIaUUpRoFUtLaBZHQAY1EVnEl3R1fZQoaAZoCWgPQwjfap24HGZUwJSGlFKUaBVLYWgWR0AGd5MURFqjdX2UKGgGaAloD0MIRYMUPIUIW8CUhpRSlGgVS1JoFkdABtWbPQfIS3V9lChoBmgJaA9DCHjy6bEtRl7AlIaUUpRoFUuAaBZHQAcRe1KGtZF1fZQoaAZoCWgPQwhr14S0hmp0wJSGlFKUaBVLXmgWR0AHLzRQaaTfdX2UKGgGaAloD0MIlWQdji4oYMCUhpRSlGgVS2FoFkdABy0eEIw/PnV9lChoBmgJaA9DCHWxaaUQEFfAlIaUUpRoFUs8aBZHQAdhnJ1aGHp1fZQoaAZoCWgPQwjMDYY6rCNiwJSGlFKUaBVLcmgWR0AH5nlGPPszdX2UKGgGaAloD0MId0gxQCJxdMCUhpRSlGgVS2RoFkdAB+atLcsUZnV9lChoBmgJaA9DCCLGa17VwFPAlIaUUpRoFUtHaBZHQAfx0uDjBEd1fZQoaAZoCWgPQwi4lPPF3tdWwJSGlFKUaBVLeWgWR0AIsA93bEgodX2UKGgGaAloD0MI9pZyvpiOeMCUhpRSlGgVS1loFkdACUj9GZuyeXV9lChoBmgJaA9DCFSOyeJ+bnTAlIaUUpRoFUuEaBZHQAlm4qgAZKp1fZQoaAZoCWgPQwiXOzPB8DtzwJSGlFKUaBVLbWgWR0AJi4e9zwMIdX2UKGgGaAloD0MIdXPxtz0QW8CUhpRSlGgVS2toFkdACZ4cFQl8gXV9lChoBmgJaA9DCLaDEfsEDFnAlIaUUpRoFUtfaBZHQAnv1lGwzLx1fZQoaAZoCWgPQwi/fogNFkpiwJSGlFKUaBVLUmgWR0AKPtUn5SFXdX2UKGgGaAloD0MIZan1fqOIW8CUhpRSlGgVS3RoFkdAClucc2itaXV9lChoBmgJaA9DCP7Soj7JiFzAlIaUUpRoFUtXaBZHQAqoGIKtxMp1fZQoaAZoCWgPQwhDU3b6QfB1wJSGlFKUaBVLi2gWR0AKtC/oJRfndX2UKGgGaAloD0MIRWXDmsqbfcCUhpRSlGgVS2hoFkdACuqNIbwSanV9lChoBmgJaA9DCKIm+nyUKGbAlIaUUpRoFUtraBZHQAskNnXd0q91fZQoaAZoCWgPQwgWTWcng+hWwJSGlFKUaBVLeGgWR0ALQYk3S8aodX2UKGgGaAloD0MIRUseT8tzQUCUhpRSlGgVS11oFkdAC3PjXFtKqXV9lChoBmgJaA9DCKkXfJqTvyBAlIaUUpRoFUtraBZHQAvwqI7/4qR1fZQoaAZoCWgPQwgibk4lgxpjwJSGlFKUaBVLQWgWR0AL/dRBNVR2dX2UKGgGaAloD0MIKUF/oUdLbMCUhpRSlGgVS25oFkdADBcMVk+X7nV9lChoBmgJaA9DCEW7Cik/RlLAlIaUUpRoFUtdaBZHQAw2EsasIVx1fZQoaAZoCWgPQwi8kA4PYehvwJSGlFKUaBVLXWgWR0AMvgxagVXWdX2UKGgGaAloD0MImlyMgXXnaMCUhpRSlGgVS09oFkdADL4+KTB68nV9lChoBmgJaA9DCNobfGEyJ1vAlIaUUpRoFUs+aBZHQAzXVbzK9wp1fZQoaAZoCWgPQwhQqn063oB2wJSGlFKUaBVLWWgWR0ANX5N47ihndX2UKGgGaAloD0MI3GYqxCNBXMCUhpRSlGgVS2loFkdADWmdiDujRHV9lChoBmgJaA9DCBr4UQ37LFXAlIaUUpRoFUtKaBZHQA2FqJuVHFx1fZQoaAZoCWgPQwhmFqHYCrV5wJSGlFKUaBVLUGgWR0ANhgZ0jkdWdX2UKGgGaAloD0MIGqIKf4ZXYcCUhpRSlGgVS3BoFkdADYcYIjW07nV9lChoBmgJaA9DCFTiOsYV/27AlIaUUpRoFUtNaBZHQA4ZB9kSVW11fZQoaAZoCWgPQwj3kPC9v2NWwJSGlFKUaBVLUWgWR0AOD+glF+d9dX2UKGgGaAloD0MITkS/tn7VW8CUhpRSlGgVS0NoFkdADmEzO5avBHV9lChoBmgJaA9DCGSUZ14O4WbAlIaUUpRoFUtkaBZHQA6oJiRW9151fZQoaAZoCWgPQwgVkWEVb59dwJSGlFKUaBVLU2gWR0AO4RIz3yqddX2UKGgGaAloD0MIImx4eqXlX8CUhpRSlGgVS4NoFkdADvx/d69kBnV9lChoBmgJaA9DCCnpYWh1eVXAlIaUUpRoFUtAaBZHQA8cDKYAsCl1fZQoaAZoCWgPQwjuz0VDxqdPwJSGlFKUaBVLPWgWR0APiX6ZYxL1dX2UKGgGaAloD0MInUfF/11fdMCUhpRSlGgVS2NoFkdAD6dfb9If83V9lChoBmgJaA9DCDsdyHpq9FrAlIaUUpRoFUtXaBZHQA/Nx+8XenB1fZQoaAZoCWgPQwgOvcXDO2F2wJSGlFKUaBVLX2gWR0AQCcEvCdjHdX2UKGgGaAloD0MIHHqLh/eIVsCUhpRSlGgVS0toFkdAEBZ+QU5+6XV9lChoBmgJaA9DCJoGRfMAYk7AlIaUUpRoFUtDaBZHQBBHB+F10T11fZQoaAZoCWgPQwhN9zqpL092wJSGlFKUaBVLW2gWR0AQWmaYu01JdX2UKGgGaAloD0MIJjeKrLVJacCUhpRSlGgVS4hoFkdAEGSIgvDgqHV9lChoBmgJaA9DCO0t5XwROYLAlIaUUpRoFUtnaBZHQBCasIVuaWp1fZQoaAZoCWgPQwjNzqJ3KtliwJSGlFKUaBVLbGgWR0AQsrEtNBWxdX2UKGgGaAloD0MIFTyFXKkuXcCUhpRSlGgVS1NoFkdAEQwGGEf1YnV9lChoBmgJaA9DCOUK73IRx0PAlIaUUpRoFUtLaBZHQBE19Wp6yB11fZQoaAZoCWgPQwjDKAgeH3N2wJSGlFKUaBVLbmgWR0ARNlqagElmdX2UKGgGaAloD0MIVtP1RNdFGMCUhpRSlGgVS3loFkdAEUASFoL5RHV9lChoBmgJaA9DCObpXFGKaHnAlIaUUpRoFUtlaBZHQBFMhC+lCTl1fZQoaAZoCWgPQwjWbyamCylRwJSGlFKUaBVLVWgWR0ARWcEvCdjHdX2UKGgGaAloD0MIGmoUkkxDbcCUhpRSlGgVS2xoFkdAEXmIj4YaYXV9lChoBmgJaA9DCEH1DyKZl2nAlIaUUpRoFUs/aBZHQBGDb8FY+0R1fZQoaAZoCWgPQwhOmDCalfFhwJSGlFKUaBVLT2gWR0ARh+RYA80UdX2UKGgGaAloD0MI4+DSMWcUYsCUhpRSlGgVS39oFkdAEahJAdGRWHV9lChoBmgJaA9DCKGi6lc6gFbAlIaUUpRoFUtTaBZHQBHknCwbEP11fZQoaAZoCWgPQwj44LVLGylZwJSGlFKUaBVLSmgWR0ASCzOX3QD3dX2UKGgGaAloD0MIBrggW5YLU8CUhpRSlGgVSzxoFkdAEibHIZIg/3V9lChoBmgJaA9DCE2EDU+vrmnAlIaUUpRoFUuAaBZHQBI/vWpZOi51fZQoaAZoCWgPQwjAeAYNfQV2wJSGlFKUaBVLeWgWR0ASTSE12q1gdX2UKGgGaAloD0MI0PHR4owrdMCUhpRSlGgVS3FoFkdAElRLsa86FXV9lChoBmgJaA9DCMHG9e/64ljAlIaUUpRoFUtBaBZHQBJircTJyQx1fZQoaAZoCWgPQwjFjVvMz8pVwJSGlFKUaBVLP2gWR0ASbA9FF2FGdX2UKGgGaAloD0MIZw3eV2XJZcCUhpRSlGgVS0RoFkdAEnEORT0g83V9lChoBmgJaA9DCEoKLIApQxPAlIaUUpRoFUtIaBZHQBK/AGjbi6x1fZQoaAZoCWgPQwiI9UatMMdWwJSGlFKUaBVLVmgWR0ASyJ79hqj8dX2UKGgGaAloD0MIFJSilXtjXcCUhpRSlGgVS35oFkdAEuIpH7P6bnV9lChoBmgJaA9DCF7WxAJfqV/AlIaUUpRoFUtHaBZHQBLoXwb2lEZ1ZS4="
|
53 |
},
|
54 |
"ep_success_buffer": {
|
55 |
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 10,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
},
|
80 |
+
"n_envs": 16,
|
81 |
"n_steps": 1024,
|
82 |
"gamma": 0.999,
|
83 |
"gae_lambda": 0.98,
|
|
|
85 |
"vf_coef": 0.5,
|
86 |
"max_grad_norm": 0.5,
|
87 |
"batch_size": 64,
|
88 |
+
"n_epochs": 10,
|
89 |
"clip_range": {
|
90 |
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
92 |
},
|
93 |
"clip_range_vf": null,
|
94 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d50563220767bd484e7d06ce814016282c40cbb130d6917a83c1450e08e6545d
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e84272bb761e3d7490d88a5feaa099fc043c67a3bdad90436e8806d900d08f53
|
3 |
+
size 43201
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.
|
3 |
-
- Stable-Baselines3: 1.
|
4 |
-
- PyTorch:
|
5 |
-
- GPU Enabled:
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Thu Apr 6 11:02:12 UTC 2023
|
2 |
+
- Python: 3.7.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 1.13.0+cpu
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.21.6
|
7 |
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -111.10676120845747, "std_reward": 38.2201652317093, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-12T08:37:53.375305"}
|