bsen26 commited on
Commit
d2e5fe7
1 Parent(s): d92f604

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ datasets:
9
+ - ethos
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: I won’t let your Allah fuck my life. Convert to Christian or make your self
14
+ and kids a favour and return back to your homelands
15
+ - text: their dark coloured race doesn't mean shit
16
+ - text: this man is an inspiration. Has killed 900 people raped 250 women. I want
17
+ to be like him. He is not scared of death. Not scared of anything.
18
+ - text: He is the weirdest autistic I’ve seen in my life
19
+ - text: I’m searching for a hitman right now to kill this whore and every other like
20
+ her. H A T E W O M E N
21
+ pipeline_tag: text-classification
22
+ inference: false
23
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
24
+ model-index:
25
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
26
+ results:
27
+ - task:
28
+ type: text-classification
29
+ name: Text Classification
30
+ dataset:
31
+ name: ethos
32
+ type: ethos
33
+ split: test
34
+ metrics:
35
+ - type: accuracy
36
+ value: 0.5154320987654321
37
+ name: Accuracy
38
+ ---
39
+
40
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
41
+
42
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [ethos](https://huggingface.co/datasets/ethos) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
43
+
44
+ The model has been trained using an efficient few-shot learning technique that involves:
45
+
46
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
47
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** SetFit
53
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
54
+ - **Classification head:** a OneVsRestClassifier instance
55
+ - **Maximum Sequence Length:** 512 tokens
56
+ <!-- - **Number of Classes:** Unknown -->
57
+ - **Training Dataset:** [ethos](https://huggingface.co/datasets/ethos)
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
64
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
65
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
66
+
67
+ ## Evaluation
68
+
69
+ ### Metrics
70
+ | Label | Accuracy |
71
+ |:--------|:---------|
72
+ | **all** | 0.5154 |
73
+
74
+ ## Uses
75
+
76
+ ### Direct Use for Inference
77
+
78
+ First install the SetFit library:
79
+
80
+ ```bash
81
+ pip install setfit
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+
86
+ ```python
87
+ from setfit import SetFitModel
88
+
89
+ # Download from the 🤗 Hub
90
+ model = SetFitModel.from_pretrained("bsen26/setfit-multilabel-example")
91
+ # Run inference
92
+ preds = model("their dark coloured race doesn't mean shit")
93
+ ```
94
+
95
+ <!--
96
+ ### Downstream Use
97
+
98
+ *List how someone could finetune this model on their own dataset.*
99
+ -->
100
+
101
+ <!--
102
+ ### Out-of-Scope Use
103
+
104
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
105
+ -->
106
+
107
+ <!--
108
+ ## Bias, Risks and Limitations
109
+
110
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
111
+ -->
112
+
113
+ <!--
114
+ ### Recommendations
115
+
116
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
117
+ -->
118
+
119
+ ## Training Details
120
+
121
+ ### Training Set Metrics
122
+ | Training set | Min | Median | Max |
123
+ |:-------------|:----|:--------|:----|
124
+ | Word count | 2 | 18.9844 | 250 |
125
+
126
+ ### Training Hyperparameters
127
+ - batch_size: (16, 16)
128
+ - num_epochs: (1, 1)
129
+ - max_steps: -1
130
+ - sampling_strategy: oversampling
131
+ - num_iterations: 20
132
+ - body_learning_rate: (2e-05, 2e-05)
133
+ - head_learning_rate: 2e-05
134
+ - loss: CosineSimilarityLoss
135
+ - distance_metric: cosine_distance
136
+ - margin: 0.25
137
+ - end_to_end: False
138
+ - use_amp: False
139
+ - warmup_proportion: 0.1
140
+ - seed: 42
141
+ - eval_max_steps: -1
142
+ - load_best_model_at_end: False
143
+
144
+ ### Training Results
145
+ | Epoch | Step | Training Loss | Validation Loss |
146
+ |:------:|:----:|:-------------:|:---------------:|
147
+ | 0.0031 | 1 | 0.2652 | - |
148
+ | 0.1562 | 50 | 0.1886 | - |
149
+ | 0.3125 | 100 | 0.0988 | - |
150
+ | 0.4688 | 150 | 0.0384 | - |
151
+ | 0.625 | 200 | 0.0448 | - |
152
+ | 0.7812 | 250 | 0.0859 | - |
153
+ | 0.9375 | 300 | 0.1018 | - |
154
+
155
+ ### Framework Versions
156
+ - Python: 3.10.12
157
+ - SetFit: 1.0.3
158
+ - Sentence Transformers: 2.7.0
159
+ - Transformers: 4.38.2
160
+ - PyTorch: 2.2.1+cu121
161
+ - Datasets: 2.18.0
162
+ - Tokenizers: 0.15.2
163
+
164
+ ## Citation
165
+
166
+ ### BibTeX
167
+ ```bibtex
168
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
169
+ doi = {10.48550/ARXIV.2209.11055},
170
+ url = {https://arxiv.org/abs/2209.11055},
171
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
172
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
173
+ title = {Efficient Few-Shot Learning Without Prompts},
174
+ publisher = {arXiv},
175
+ year = {2022},
176
+ copyright = {Creative Commons Attribution 4.0 International}
177
+ }
178
+ ```
179
+
180
+ <!--
181
+ ## Glossary
182
+
183
+ *Clearly define terms in order to be accessible across audiences.*
184
+ -->
185
+
186
+ <!--
187
+ ## Model Card Authors
188
+
189
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
190
+ -->
191
+
192
+ <!--
193
+ ## Model Card Contact
194
+
195
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
196
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.38.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90e1da4d5da840e123dae97c2c339b84a1730ec2e28f24ead1951ce9b1f83fcf
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcc12431912fdcf8e8fef935e35392b4609a7e47da3da13bccde8cc63ced8543
3
+ size 52836
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff