bryjaco commited on
Commit
7e7d124
·
1 Parent(s): 3c52824

my first rl yay!

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 246.39 +/- 16.62
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd987291790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd987291820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9872918b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd987291940>", "_build": "<function ActorCriticPolicy._build at 0x7fd9872919d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd987291a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd987291af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd987291b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd987291c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd987291ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd987291d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd9872921b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670958371292155081, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB2Fu93LxY0CUhpRSlIwBbJRN6AOMAXSUR0CWOxkMCtA+dX2UKGgGaAloD0MIHF97Zsl7cECUhpRSlGgVTQYBaBZHQJY8kgyM1j11fZQoaAZoCWgPQwgsZoS3R19xQJSGlFKUaBVNDgFoFkdAljysQI2OyXV9lChoBmgJaA9DCHkGDf0TqW9AlIaUUpRoFU0PAWgWR0CWPmWT5ftydX2UKGgGaAloD0MItJPBUTLKcECUhpRSlGgVS/NoFkdAlj7MfvF3p3V9lChoBmgJaA9DCM2xvKse+kFAlIaUUpRoFUvIaBZHQJY/C7Bfrrx1fZQoaAZoCWgPQwjtZdtpK6twQJSGlFKUaBVNGQFoFkdAlj+2vB7/oHV9lChoBmgJaA9DCMkBu5r8u3BAlIaUUpRoFU0BAWgWR0CWQVEuxrzodX2UKGgGaAloD0MISMX/HRFCcECUhpRSlGgVTQ0BaBZHQJZCD+PzWf91fZQoaAZoCWgPQwh+5NakW5BxQJSGlFKUaBVL8mgWR0CWQn4xDb8FdX2UKGgGaAloD0MIsB73rRYtcECUhpRSlGgVS+toFkdAlkTIYR/ViHV9lChoBmgJaA9DCKHYCppWVHBAlIaUUpRoFU1UAWgWR0CWRa9US7GvdX2UKGgGaAloD0MIMLjmjv7WbUCUhpRSlGgVTQcBaBZHQJZFul/H5rR1fZQoaAZoCWgPQwg+Qs2QquRvQJSGlFKUaBVL8mgWR0CWR3gcLjPwdX2UKGgGaAloD0MIEjP7PAbAcUCUhpRSlGgVTRwBaBZHQJZIuPuG9Ht1fZQoaAZoCWgPQwhtj95wHxdiQJSGlFKUaBVN6ANoFkdAlkjKMJhOQHV9lChoBmgJaA9DCIBFfv0QmnFAlIaUUpRoFU0wAWgWR0CWprA6Mir1dX2UKGgGaAloD0MIU5J1OLpccECUhpRSlGgVS/VoFkdAlqfdsenyeHV9lChoBmgJaA9DCMlXAikxP3BAlIaUUpRoFUvfaBZHQJaqMAiml691fZQoaAZoCWgPQwijPV5Ix3ZwQJSGlFKUaBVNUgFoFkdAlqyGYnfEXXV9lChoBmgJaA9DCMgMVMY/ym9AlIaUUpRoFUv8aBZHQJasq35N47l1fZQoaAZoCWgPQwgTDr3FA+xxQJSGlFKUaBVNfAFoFkdAlqzq4H5aeXV9lChoBmgJaA9DCFq3Qe231m5AlIaUUpRoFUvpaBZHQJaty1NQCS11fZQoaAZoCWgPQwhT7GgcaixjQJSGlFKUaBVN6ANoFkdAlq3RLGrCFnV9lChoBmgJaA9DCO2BVmBIaWFAlIaUUpRoFU3oA2gWR0CWreP8AJb/dX2UKGgGaAloD0MIhH8RNCYDcECUhpRSlGgVS/5oFkdAlq/GShakh3V9lChoBmgJaA9DCPkwe9l2mWJAlIaUUpRoFU3oA2gWR0CWsDLUkOZtdX2UKGgGaAloD0MImkARiximb0CUhpRSlGgVTREBaBZHQJawdZq20At1fZQoaAZoCWgPQwjyQGSRpuZtQJSGlFKUaBVNHAFoFkdAlrNVpfx+a3V9lChoBmgJaA9DCPVKWYY4EGxAlIaUUpRoFUvwaBZHQJazw8OkLx91fZQoaAZoCWgPQwjQYFPnUTtxQJSGlFKUaBVL22gWR0CWtRrbg0j1dX2UKGgGaAloD0MI93XgnBHhbkCUhpRSlGgVS/hoFkdAlrYvwd8zAXV9lChoBmgJaA9DCEW94NOcVW5AlIaUUpRoFUv+aBZHQJa3xNlAeJZ1fZQoaAZoCWgPQwgJ+aBnM2JrQJSGlFKUaBVNIAFoFkdAlrhJIUahpXV9lChoBmgJaA9DCOm12ViJ+G5AlIaUUpRoFU06AmgWR0CWuTTrE9+xdX2UKGgGaAloD0MI/IwLB0LDcUCUhpRSlGgVTWcBaBZHQJa8PE61b7l1fZQoaAZoCWgPQwiTjJyFPXZuQJSGlFKUaBVNKwNoFkdAlrx0pRXOnnV9lChoBmgJaA9DCPgYrDjVNGRAlIaUUpRoFU3oA2gWR0CWvJq6e5FxdX2UKGgGaAloD0MIuHcN+hJecECUhpRSlGgVS/9oFkdAlr34AwPAf3V9lChoBmgJaA9DCIqPT8hOA2NAlIaUUpRoFU3oA2gWR0CWvlgU1yeadX2UKGgGaAloD0MIJ/bQPpa5cECUhpRSlGgVTVkBaBZHQJa+a6cy31B1fZQoaAZoCWgPQwieQxmqIg5wQJSGlFKUaBVL8mgWR0CWvx76YVqOdX2UKGgGaAloD0MIiPNwAtOub0CUhpRSlGgVTRYBaBZHQJa/OwA2hqV1fZQoaAZoCWgPQwh7o1aYvtZwQJSGlFKUaBVL6WgWR0CWwYJJXhfjdX2UKGgGaAloD0MI5e/eUWNcb0CUhpRSlGgVS/1oFkdAlsHXZ9NN8HV9lChoBmgJaA9DCFwBhXr6P29AlIaUUpRoFU0tAWgWR0CWxR+RoysTdX2UKGgGaAloD0MIs89jlGckcECUhpRSlGgVS/doFkdAlsYwMUh3aHV9lChoBmgJaA9DCE1nJ4MjJ29AlIaUUpRoFUv+aBZHQJbGV1PnB+F1fZQoaAZoCWgPQwgvTny1I3FxQJSGlFKUaBVL5mgWR0CWx3gOSW7fdX2UKGgGaAloD0MITPxR1JmJb0CUhpRSlGgVS/VoFkdAlseYrBj4H3V9lChoBmgJaA9DCD4kfO9vtG5AlIaUUpRoFUv0aBZHQJbJD6SDAah1fZQoaAZoCWgPQwgVjiCVotlwQJSGlFKUaBVNIAFoFkdAlsnn27FsHnV9lChoBmgJaA9DCIDvNm+cWXFAlIaUUpRoFU0eAWgWR0CWyrFH8TBZdX2UKGgGaAloD0MI4e1BCEh4bkCUhpRSlGgVTZcCaBZHQJbK7zkIX0p1fZQoaAZoCWgPQwi9xi5RvZttQJSGlFKUaBVL/GgWR0CWy945tFa0dX2UKGgGaAloD0MIu3zrw/oIcECUhpRSlGgVTdICaBZHQJbMu+UQkHF1fZQoaAZoCWgPQwgnaf6YFnxxQJSGlFKUaBVL5mgWR0CWzn0CRwIddX2UKGgGaAloD0MISgfr/xyhYECUhpRSlGgVTegDaBZHQJbPIOSW7e51fZQoaAZoCWgPQwhypDMwMmtwQJSGlFKUaBVL4WgWR0CWz0Wd3B55dX2UKGgGaAloD0MIIO1/gDVTbUCUhpRSlGgVS/RoFkdAltAMEzO5a3V9lChoBmgJaA9DCJllTwKbHnBAlIaUUpRoFUvvaBZHQJbRAMNMGot1fZQoaAZoCWgPQwjO/dXjPjFuQJSGlFKUaBVL3mgWR0CW0ZBPKuB+dX2UKGgGaAloD0MILJ0Pz5Kib0CUhpRSlGgVTQsBaBZHQJbR4plSS/11fZQoaAZoCWgPQwjEswQZAUhwQJSGlFKUaBVNHwFoFkdAltSzYh+vyXV9lChoBmgJaA9DCLDG2XQEoV1AlIaUUpRoFU3oA2gWR0CW1SpON5t4dX2UKGgGaAloD0MIX5oiwOkTcUCUhpRSlGgVTRoBaBZHQJbVQoc7yQR1fZQoaAZoCWgPQwh6/x8nTGltQJSGlFKUaBVL+2gWR0CW1hXIEKVqdX2UKGgGaAloD0MI+aBns2q5bkCUhpRSlGgVTRIBaBZHQJbWGDpTuOV1fZQoaAZoCWgPQwgVV5V9l7NyQJSGlFKUaBVNNwFoFkdAltZtNi6QNnV9lChoBmgJaA9DCHi4HRoWwm9AlIaUUpRoFUviaBZHQJbWu8CgbqB1fZQoaAZoCWgPQwhyTuyhfeNxQJSGlFKUaBVL/GgWR0CW2CTspobodX2UKGgGaAloD0MIU14roTvLbkCUhpRSlGgVTQ8BaBZHQJbYtVZLZjB1fZQoaAZoCWgPQwjO/GoOkI1wQJSGlFKUaBVL+WgWR0CW2NbpNbkfdX2UKGgGaAloD0MILspskMllcECUhpRSlGgVTRUBaBZHQJbbNTjvNNd1fZQoaAZoCWgPQwj+RGXDmoZwQJSGlFKUaBVNFAFoFkdAltuBsVLzw3V9lChoBmgJaA9DCKs/wjDg/WFAlIaUUpRoFU3oA2gWR0CW3KcbiqACdX2UKGgGaAloD0MIpMSu7S1lcUCUhpRSlGgVS/RoFkdAlt3A3Lmp2nV9lChoBmgJaA9DCDMbZJIRK29AlIaUUpRoFUv/aBZHQJbeFMWXTmZ1fZQoaAZoCWgPQwjP1yyXjShxQJSGlFKUaBVL72gWR0CW3tvmHP/rdX2UKGgGaAloD0MItr+zPfqLbkCUhpRSlGgVTSMBaBZHQJbe+PZIxxl1fZQoaAZoCWgPQwjN5nEYTLduQJSGlFKUaBVNAQFoFkdAlt/hW1c+q3V9lChoBmgJaA9DCKd38X7csERAlIaUUpRoFUvXaBZHQJbgsEV32VV1fZQoaAZoCWgPQwiARunSP15iQJSGlFKUaBVN6ANoFkdAluHwydnTRnV9lChoBmgJaA9DCGUcI9ljqXFAlIaUUpRoFU1SAWgWR0CW4hwvQF9sdX2UKGgGaAloD0MInuv7cFDucECUhpRSlGgVS/hoFkdAluYBbSqlxnV9lChoBmgJaA9DCKoQj8QLe3FAlIaUUpRoFU0kAWgWR0CW5j/vOQhfdX2UKGgGaAloD0MIrizRWWbjZECUhpRSlGgVTegDaBZHQJbnvNKRMex1fZQoaAZoCWgPQwjmO/iJw/pwQJSGlFKUaBVNoQFoFkdAluhkLlV94XV9lChoBmgJaA9DCH8uGjIetUpAlIaUUpRoFUvHaBZHQJbobj6vaDh1fZQoaAZoCWgPQwjjN4WVihNxQJSGlFKUaBVL/2gWR0CW6cfLs8gZdX2UKGgGaAloD0MIE7afjHG6cECUhpRSlGgVTSUBaBZHQJbqLuF6Avt1fZQoaAZoCWgPQwgbu0T1FhJxQJSGlFKUaBVNIgFoFkdAluowGnn+ynV9lChoBmgJaA9DCM+EJomlDnBAlIaUUpRoFUvsaBZHQJbrUVrRBu51fZQoaAZoCWgPQwgbSBebFuJxQJSGlFKUaBVNBQFoFkdAluwQeq7yx3V9lChoBmgJaA9DCICfceHAL3FAlIaUUpRoFUv9aBZHQJbwRKtga3t1fZQoaAZoCWgPQwjpJjEIrDZvQJSGlFKUaBVL42gWR0CW8X4YaYNRdX2UKGgGaAloD0MIVVBR9eseckCUhpRSlGgVTRMBaBZHQJbzvcqOLix1fZQoaAZoCWgPQwgMzApFOiFtQJSGlFKUaBVNBQFoFkdAlvUmSlnAZnV9lChoBmgJaA9DCDQw8rKmwW1AlIaUUpRoFUv4aBZHQJb19WwNb1R1fZQoaAZoCWgPQwhOCvMeJ1JxQJSGlFKUaBVNGQFoFkdAlvYWH58BuHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:749a9af1f3191f6ee8e35b1087b3b5968f99e6332ef255bc7cf2341b4056fd5d
3
+ size 146358
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd987291790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd987291820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9872918b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd987291940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd9872919d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd987291a60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd987291af0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd987291b80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd987291c10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd987291ca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd987291d30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fd9872921b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670958371292155081,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.015808000000000044,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVVRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB2Fu93LxY0CUhpRSlIwBbJRN6AOMAXSUR0CWOxkMCtA+dX2UKGgGaAloD0MIHF97Zsl7cECUhpRSlGgVTQYBaBZHQJY8kgyM1j11fZQoaAZoCWgPQwgsZoS3R19xQJSGlFKUaBVNDgFoFkdAljysQI2OyXV9lChoBmgJaA9DCHkGDf0TqW9AlIaUUpRoFU0PAWgWR0CWPmWT5ftydX2UKGgGaAloD0MItJPBUTLKcECUhpRSlGgVS/NoFkdAlj7MfvF3p3V9lChoBmgJaA9DCM2xvKse+kFAlIaUUpRoFUvIaBZHQJY/C7Bfrrx1fZQoaAZoCWgPQwjtZdtpK6twQJSGlFKUaBVNGQFoFkdAlj+2vB7/oHV9lChoBmgJaA9DCMkBu5r8u3BAlIaUUpRoFU0BAWgWR0CWQVEuxrzodX2UKGgGaAloD0MISMX/HRFCcECUhpRSlGgVTQ0BaBZHQJZCD+PzWf91fZQoaAZoCWgPQwh+5NakW5BxQJSGlFKUaBVL8mgWR0CWQn4xDb8FdX2UKGgGaAloD0MIsB73rRYtcECUhpRSlGgVS+toFkdAlkTIYR/ViHV9lChoBmgJaA9DCKHYCppWVHBAlIaUUpRoFU1UAWgWR0CWRa9US7GvdX2UKGgGaAloD0MIMLjmjv7WbUCUhpRSlGgVTQcBaBZHQJZFul/H5rR1fZQoaAZoCWgPQwg+Qs2QquRvQJSGlFKUaBVL8mgWR0CWR3gcLjPwdX2UKGgGaAloD0MIEjP7PAbAcUCUhpRSlGgVTRwBaBZHQJZIuPuG9Ht1fZQoaAZoCWgPQwhtj95wHxdiQJSGlFKUaBVN6ANoFkdAlkjKMJhOQHV9lChoBmgJaA9DCIBFfv0QmnFAlIaUUpRoFU0wAWgWR0CWprA6Mir1dX2UKGgGaAloD0MIU5J1OLpccECUhpRSlGgVS/VoFkdAlqfdsenyeHV9lChoBmgJaA9DCMlXAikxP3BAlIaUUpRoFUvfaBZHQJaqMAiml691fZQoaAZoCWgPQwijPV5Ix3ZwQJSGlFKUaBVNUgFoFkdAlqyGYnfEXXV9lChoBmgJaA9DCMgMVMY/ym9AlIaUUpRoFUv8aBZHQJasq35N47l1fZQoaAZoCWgPQwgTDr3FA+xxQJSGlFKUaBVNfAFoFkdAlqzq4H5aeXV9lChoBmgJaA9DCFq3Qe231m5AlIaUUpRoFUvpaBZHQJaty1NQCS11fZQoaAZoCWgPQwhT7GgcaixjQJSGlFKUaBVN6ANoFkdAlq3RLGrCFnV9lChoBmgJaA9DCO2BVmBIaWFAlIaUUpRoFU3oA2gWR0CWreP8AJb/dX2UKGgGaAloD0MIhH8RNCYDcECUhpRSlGgVS/5oFkdAlq/GShakh3V9lChoBmgJaA9DCPkwe9l2mWJAlIaUUpRoFU3oA2gWR0CWsDLUkOZtdX2UKGgGaAloD0MImkARiximb0CUhpRSlGgVTREBaBZHQJawdZq20At1fZQoaAZoCWgPQwjyQGSRpuZtQJSGlFKUaBVNHAFoFkdAlrNVpfx+a3V9lChoBmgJaA9DCPVKWYY4EGxAlIaUUpRoFUvwaBZHQJazw8OkLx91fZQoaAZoCWgPQwjQYFPnUTtxQJSGlFKUaBVL22gWR0CWtRrbg0j1dX2UKGgGaAloD0MI93XgnBHhbkCUhpRSlGgVS/hoFkdAlrYvwd8zAXV9lChoBmgJaA9DCEW94NOcVW5AlIaUUpRoFUv+aBZHQJa3xNlAeJZ1fZQoaAZoCWgPQwgJ+aBnM2JrQJSGlFKUaBVNIAFoFkdAlrhJIUahpXV9lChoBmgJaA9DCOm12ViJ+G5AlIaUUpRoFU06AmgWR0CWuTTrE9+xdX2UKGgGaAloD0MI/IwLB0LDcUCUhpRSlGgVTWcBaBZHQJa8PE61b7l1fZQoaAZoCWgPQwiTjJyFPXZuQJSGlFKUaBVNKwNoFkdAlrx0pRXOnnV9lChoBmgJaA9DCPgYrDjVNGRAlIaUUpRoFU3oA2gWR0CWvJq6e5FxdX2UKGgGaAloD0MIuHcN+hJecECUhpRSlGgVS/9oFkdAlr34AwPAf3V9lChoBmgJaA9DCIqPT8hOA2NAlIaUUpRoFU3oA2gWR0CWvlgU1yeadX2UKGgGaAloD0MIJ/bQPpa5cECUhpRSlGgVTVkBaBZHQJa+a6cy31B1fZQoaAZoCWgPQwieQxmqIg5wQJSGlFKUaBVL8mgWR0CWvx76YVqOdX2UKGgGaAloD0MIiPNwAtOub0CUhpRSlGgVTRYBaBZHQJa/OwA2hqV1fZQoaAZoCWgPQwh7o1aYvtZwQJSGlFKUaBVL6WgWR0CWwYJJXhfjdX2UKGgGaAloD0MI5e/eUWNcb0CUhpRSlGgVS/1oFkdAlsHXZ9NN8HV9lChoBmgJaA9DCFwBhXr6P29AlIaUUpRoFU0tAWgWR0CWxR+RoysTdX2UKGgGaAloD0MIs89jlGckcECUhpRSlGgVS/doFkdAlsYwMUh3aHV9lChoBmgJaA9DCE1nJ4MjJ29AlIaUUpRoFUv+aBZHQJbGV1PnB+F1fZQoaAZoCWgPQwgvTny1I3FxQJSGlFKUaBVL5mgWR0CWx3gOSW7fdX2UKGgGaAloD0MITPxR1JmJb0CUhpRSlGgVS/VoFkdAlseYrBj4H3V9lChoBmgJaA9DCD4kfO9vtG5AlIaUUpRoFUv0aBZHQJbJD6SDAah1fZQoaAZoCWgPQwgVjiCVotlwQJSGlFKUaBVNIAFoFkdAlsnn27FsHnV9lChoBmgJaA9DCIDvNm+cWXFAlIaUUpRoFU0eAWgWR0CWyrFH8TBZdX2UKGgGaAloD0MI4e1BCEh4bkCUhpRSlGgVTZcCaBZHQJbK7zkIX0p1fZQoaAZoCWgPQwi9xi5RvZttQJSGlFKUaBVL/GgWR0CWy945tFa0dX2UKGgGaAloD0MIu3zrw/oIcECUhpRSlGgVTdICaBZHQJbMu+UQkHF1fZQoaAZoCWgPQwgnaf6YFnxxQJSGlFKUaBVL5mgWR0CWzn0CRwIddX2UKGgGaAloD0MISgfr/xyhYECUhpRSlGgVTegDaBZHQJbPIOSW7e51fZQoaAZoCWgPQwhypDMwMmtwQJSGlFKUaBVL4WgWR0CWz0Wd3B55dX2UKGgGaAloD0MIIO1/gDVTbUCUhpRSlGgVS/RoFkdAltAMEzO5a3V9lChoBmgJaA9DCJllTwKbHnBAlIaUUpRoFUvvaBZHQJbRAMNMGot1fZQoaAZoCWgPQwjO/dXjPjFuQJSGlFKUaBVL3mgWR0CW0ZBPKuB+dX2UKGgGaAloD0MILJ0Pz5Kib0CUhpRSlGgVTQsBaBZHQJbR4plSS/11fZQoaAZoCWgPQwjEswQZAUhwQJSGlFKUaBVNHwFoFkdAltSzYh+vyXV9lChoBmgJaA9DCLDG2XQEoV1AlIaUUpRoFU3oA2gWR0CW1SpON5t4dX2UKGgGaAloD0MIX5oiwOkTcUCUhpRSlGgVTRoBaBZHQJbVQoc7yQR1fZQoaAZoCWgPQwh6/x8nTGltQJSGlFKUaBVL+2gWR0CW1hXIEKVqdX2UKGgGaAloD0MI+aBns2q5bkCUhpRSlGgVTRIBaBZHQJbWGDpTuOV1fZQoaAZoCWgPQwgVV5V9l7NyQJSGlFKUaBVNNwFoFkdAltZtNi6QNnV9lChoBmgJaA9DCHi4HRoWwm9AlIaUUpRoFUviaBZHQJbWu8CgbqB1fZQoaAZoCWgPQwhyTuyhfeNxQJSGlFKUaBVL/GgWR0CW2CTspobodX2UKGgGaAloD0MIU14roTvLbkCUhpRSlGgVTQ8BaBZHQJbYtVZLZjB1fZQoaAZoCWgPQwjO/GoOkI1wQJSGlFKUaBVL+WgWR0CW2NbpNbkfdX2UKGgGaAloD0MILspskMllcECUhpRSlGgVTRUBaBZHQJbbNTjvNNd1fZQoaAZoCWgPQwj+RGXDmoZwQJSGlFKUaBVNFAFoFkdAltuBsVLzw3V9lChoBmgJaA9DCKs/wjDg/WFAlIaUUpRoFU3oA2gWR0CW3KcbiqACdX2UKGgGaAloD0MIpMSu7S1lcUCUhpRSlGgVS/RoFkdAlt3A3Lmp2nV9lChoBmgJaA9DCDMbZJIRK29AlIaUUpRoFUv/aBZHQJbeFMWXTmZ1fZQoaAZoCWgPQwjP1yyXjShxQJSGlFKUaBVL72gWR0CW3tvmHP/rdX2UKGgGaAloD0MItr+zPfqLbkCUhpRSlGgVTSMBaBZHQJbe+PZIxxl1fZQoaAZoCWgPQwjN5nEYTLduQJSGlFKUaBVNAQFoFkdAlt/hW1c+q3V9lChoBmgJaA9DCKd38X7csERAlIaUUpRoFUvXaBZHQJbgsEV32VV1fZQoaAZoCWgPQwiARunSP15iQJSGlFKUaBVN6ANoFkdAluHwydnTRnV9lChoBmgJaA9DCGUcI9ljqXFAlIaUUpRoFU1SAWgWR0CW4hwvQF9sdX2UKGgGaAloD0MInuv7cFDucECUhpRSlGgVS/hoFkdAluYBbSqlxnV9lChoBmgJaA9DCKoQj8QLe3FAlIaUUpRoFU0kAWgWR0CW5j/vOQhfdX2UKGgGaAloD0MIrizRWWbjZECUhpRSlGgVTegDaBZHQJbnvNKRMex1fZQoaAZoCWgPQwjmO/iJw/pwQJSGlFKUaBVNoQFoFkdAluhkLlV94XV9lChoBmgJaA9DCH8uGjIetUpAlIaUUpRoFUvHaBZHQJbobj6vaDh1fZQoaAZoCWgPQwjjN4WVihNxQJSGlFKUaBVL/2gWR0CW6cfLs8gZdX2UKGgGaAloD0MIE7afjHG6cECUhpRSlGgVTSUBaBZHQJbqLuF6Avt1fZQoaAZoCWgPQwgbu0T1FhJxQJSGlFKUaBVNIgFoFkdAluowGnn+ynV9lChoBmgJaA9DCM+EJomlDnBAlIaUUpRoFUvsaBZHQJbrUVrRBu51fZQoaAZoCWgPQwgbSBebFuJxQJSGlFKUaBVNBQFoFkdAluwQeq7yx3V9lChoBmgJaA9DCICfceHAL3FAlIaUUpRoFUv9aBZHQJbwRKtga3t1fZQoaAZoCWgPQwjpJjEIrDZvQJSGlFKUaBVL42gWR0CW8X4YaYNRdX2UKGgGaAloD0MIVVBR9eseckCUhpRSlGgVTRMBaBZHQJbzvcqOLix1fZQoaAZoCWgPQwgMzApFOiFtQJSGlFKUaBVNBQFoFkdAlvUmSlnAZnV9lChoBmgJaA9DCDQw8rKmwW1AlIaUUpRoFUv4aBZHQJb19WwNb1R1fZQoaAZoCWgPQwhOCvMeJ1JxQJSGlFKUaBVNGQFoFkdAlvYWH58BuHVlLg=="
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 310,
76
+ "n_steps": 2048,
77
+ "gamma": 0.99,
78
+ "gae_lambda": 0.95,
79
+ "ent_coef": 0.0,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 10,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65ca93b9eb62c98018ebc4557ae67ea765e5baab859894078f5dcf92cd597e4d
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5001777a85f02b4e60b45c02bab320b38339dec0ea70083fecab7a08e5068d18
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (218 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 246.39111807714949, "std_reward": 16.619511697688324, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-13T19:31:13.175630"}