|
import argparse, os, sys, glob |
|
import clip |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from tqdm import tqdm, trange |
|
from itertools import islice |
|
from einops import rearrange, repeat |
|
from torchvision.utils import make_grid |
|
import scann |
|
import time |
|
from multiprocessing import cpu_count |
|
|
|
from ldm.util import instantiate_from_config, parallel_data_prefetch |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from ldm.models.diffusion.plms import PLMSSampler |
|
from ldm.modules.encoders.modules import FrozenClipImageEmbedder, FrozenCLIPTextEmbedder |
|
|
|
DATABASES = [ |
|
"openimages", |
|
"artbench-art_nouveau", |
|
"artbench-baroque", |
|
"artbench-expressionism", |
|
"artbench-impressionism", |
|
"artbench-post_impressionism", |
|
"artbench-realism", |
|
"artbench-romanticism", |
|
"artbench-renaissance", |
|
"artbench-surrealism", |
|
"artbench-ukiyo_e", |
|
] |
|
|
|
|
|
def chunk(it, size): |
|
it = iter(it) |
|
return iter(lambda: tuple(islice(it, size)), ()) |
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False): |
|
print(f"Loading model from {ckpt}") |
|
pl_sd = torch.load(ckpt, map_location="cpu") |
|
if "global_step" in pl_sd: |
|
print(f"Global Step: {pl_sd['global_step']}") |
|
sd = pl_sd["state_dict"] |
|
model = instantiate_from_config(config.model) |
|
m, u = model.load_state_dict(sd, strict=False) |
|
if len(m) > 0 and verbose: |
|
print("missing keys:") |
|
print(m) |
|
if len(u) > 0 and verbose: |
|
print("unexpected keys:") |
|
print(u) |
|
|
|
model.cuda() |
|
model.eval() |
|
return model |
|
|
|
|
|
class Searcher(object): |
|
def __init__(self, database, retriever_version='ViT-L/14'): |
|
assert database in DATABASES |
|
|
|
self.database_name = database |
|
self.searcher_savedir = f'data/rdm/searchers/{self.database_name}' |
|
self.database_path = f'data/rdm/retrieval_databases/{self.database_name}' |
|
self.retriever = self.load_retriever(version=retriever_version) |
|
self.database = {'embedding': [], |
|
'img_id': [], |
|
'patch_coords': []} |
|
self.load_database() |
|
self.load_searcher() |
|
|
|
def train_searcher(self, k, |
|
metric='dot_product', |
|
searcher_savedir=None): |
|
|
|
print('Start training searcher') |
|
searcher = scann.scann_ops_pybind.builder(self.database['embedding'] / |
|
np.linalg.norm(self.database['embedding'], axis=1)[:, np.newaxis], |
|
k, metric) |
|
self.searcher = searcher.score_brute_force().build() |
|
print('Finish training searcher') |
|
|
|
if searcher_savedir is not None: |
|
print(f'Save trained searcher under "{searcher_savedir}"') |
|
os.makedirs(searcher_savedir, exist_ok=True) |
|
self.searcher.serialize(searcher_savedir) |
|
|
|
def load_single_file(self, saved_embeddings): |
|
compressed = np.load(saved_embeddings) |
|
self.database = {key: compressed[key] for key in compressed.files} |
|
print('Finished loading of clip embeddings.') |
|
|
|
def load_multi_files(self, data_archive): |
|
out_data = {key: [] for key in self.database} |
|
for d in tqdm(data_archive, desc=f'Loading datapool from {len(data_archive)} individual files.'): |
|
for key in d.files: |
|
out_data[key].append(d[key]) |
|
|
|
return out_data |
|
|
|
def load_database(self): |
|
|
|
print(f'Load saved patch embedding from "{self.database_path}"') |
|
file_content = glob.glob(os.path.join(self.database_path, '*.npz')) |
|
|
|
if len(file_content) == 1: |
|
self.load_single_file(file_content[0]) |
|
elif len(file_content) > 1: |
|
data = [np.load(f) for f in file_content] |
|
prefetched_data = parallel_data_prefetch(self.load_multi_files, data, |
|
n_proc=min(len(data), cpu_count()), target_data_type='dict') |
|
|
|
self.database = {key: np.concatenate([od[key] for od in prefetched_data], axis=1)[0] for key in |
|
self.database} |
|
else: |
|
raise ValueError(f'No npz-files in specified path "{self.database_path}" is this directory existing?') |
|
|
|
print(f'Finished loading of retrieval database of length {self.database["embedding"].shape[0]}.') |
|
|
|
def load_retriever(self, version='ViT-L/14', ): |
|
model = FrozenClipImageEmbedder(model=version) |
|
if torch.cuda.is_available(): |
|
model.cuda() |
|
model.eval() |
|
return model |
|
|
|
def load_searcher(self): |
|
print(f'load searcher for database {self.database_name} from {self.searcher_savedir}') |
|
self.searcher = scann.scann_ops_pybind.load_searcher(self.searcher_savedir) |
|
print('Finished loading searcher.') |
|
|
|
def search(self, x, k): |
|
if self.searcher is None and self.database['embedding'].shape[0] < 2e4: |
|
self.train_searcher(k) |
|
assert self.searcher is not None, 'Cannot search with uninitialized searcher' |
|
if isinstance(x, torch.Tensor): |
|
x = x.detach().cpu().numpy() |
|
if len(x.shape) == 3: |
|
x = x[:, 0] |
|
query_embeddings = x / np.linalg.norm(x, axis=1)[:, np.newaxis] |
|
|
|
start = time.time() |
|
nns, distances = self.searcher.search_batched(query_embeddings, final_num_neighbors=k) |
|
end = time.time() |
|
|
|
out_embeddings = self.database['embedding'][nns] |
|
out_img_ids = self.database['img_id'][nns] |
|
out_pc = self.database['patch_coords'][nns] |
|
|
|
out = {'nn_embeddings': out_embeddings / np.linalg.norm(out_embeddings, axis=-1)[..., np.newaxis], |
|
'img_ids': out_img_ids, |
|
'patch_coords': out_pc, |
|
'queries': x, |
|
'exec_time': end - start, |
|
'nns': nns, |
|
'q_embeddings': query_embeddings} |
|
|
|
return out |
|
|
|
def __call__(self, x, n): |
|
return self.search(x, n) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument( |
|
"--prompt", |
|
type=str, |
|
nargs="?", |
|
default="a painting of a virus monster playing guitar", |
|
help="the prompt to render" |
|
) |
|
|
|
parser.add_argument( |
|
"--outdir", |
|
type=str, |
|
nargs="?", |
|
help="dir to write results to", |
|
default="outputs/txt2img-samples" |
|
) |
|
|
|
parser.add_argument( |
|
"--skip_grid", |
|
action='store_true', |
|
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", |
|
) |
|
|
|
parser.add_argument( |
|
"--ddim_steps", |
|
type=int, |
|
default=50, |
|
help="number of ddim sampling steps", |
|
) |
|
|
|
parser.add_argument( |
|
"--n_repeat", |
|
type=int, |
|
default=1, |
|
help="number of repeats in CLIP latent space", |
|
) |
|
|
|
parser.add_argument( |
|
"--plms", |
|
action='store_true', |
|
help="use plms sampling", |
|
) |
|
|
|
parser.add_argument( |
|
"--ddim_eta", |
|
type=float, |
|
default=0.0, |
|
help="ddim eta (eta=0.0 corresponds to deterministic sampling", |
|
) |
|
parser.add_argument( |
|
"--n_iter", |
|
type=int, |
|
default=1, |
|
help="sample this often", |
|
) |
|
|
|
parser.add_argument( |
|
"--H", |
|
type=int, |
|
default=768, |
|
help="image height, in pixel space", |
|
) |
|
|
|
parser.add_argument( |
|
"--W", |
|
type=int, |
|
default=768, |
|
help="image width, in pixel space", |
|
) |
|
|
|
parser.add_argument( |
|
"--n_samples", |
|
type=int, |
|
default=3, |
|
help="how many samples to produce for each given prompt. A.k.a batch size", |
|
) |
|
|
|
parser.add_argument( |
|
"--n_rows", |
|
type=int, |
|
default=0, |
|
help="rows in the grid (default: n_samples)", |
|
) |
|
|
|
parser.add_argument( |
|
"--scale", |
|
type=float, |
|
default=5.0, |
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", |
|
) |
|
|
|
parser.add_argument( |
|
"--from-file", |
|
type=str, |
|
help="if specified, load prompts from this file", |
|
) |
|
|
|
parser.add_argument( |
|
"--config", |
|
type=str, |
|
default="configs/retrieval-augmented-diffusion/768x768.yaml", |
|
help="path to config which constructs model", |
|
) |
|
|
|
parser.add_argument( |
|
"--ckpt", |
|
type=str, |
|
default="models/rdm/rdm768x768/model.ckpt", |
|
help="path to checkpoint of model", |
|
) |
|
|
|
parser.add_argument( |
|
"--clip_type", |
|
type=str, |
|
default="ViT-L/14", |
|
help="which CLIP model to use for retrieval and NN encoding", |
|
) |
|
parser.add_argument( |
|
"--database", |
|
type=str, |
|
default='artbench-surrealism', |
|
choices=DATABASES, |
|
help="The database used for the search, only applied when --use_neighbors=True", |
|
) |
|
parser.add_argument( |
|
"--use_neighbors", |
|
default=False, |
|
action='store_true', |
|
help="Include neighbors in addition to text prompt for conditioning", |
|
) |
|
parser.add_argument( |
|
"--knn", |
|
default=10, |
|
type=int, |
|
help="The number of included neighbors, only applied when --use_neighbors=True", |
|
) |
|
|
|
opt = parser.parse_args() |
|
|
|
config = OmegaConf.load(f"{opt.config}") |
|
model = load_model_from_config(config, f"{opt.ckpt}") |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model = model.to(device) |
|
|
|
clip_text_encoder = FrozenCLIPTextEmbedder(opt.clip_type).to(device) |
|
|
|
if opt.plms: |
|
sampler = PLMSSampler(model) |
|
else: |
|
sampler = DDIMSampler(model) |
|
|
|
os.makedirs(opt.outdir, exist_ok=True) |
|
outpath = opt.outdir |
|
|
|
batch_size = opt.n_samples |
|
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size |
|
if not opt.from_file: |
|
prompt = opt.prompt |
|
assert prompt is not None |
|
data = [batch_size * [prompt]] |
|
|
|
else: |
|
print(f"reading prompts from {opt.from_file}") |
|
with open(opt.from_file, "r") as f: |
|
data = f.read().splitlines() |
|
data = list(chunk(data, batch_size)) |
|
|
|
sample_path = os.path.join(outpath, "samples") |
|
os.makedirs(sample_path, exist_ok=True) |
|
base_count = len(os.listdir(sample_path)) |
|
grid_count = len(os.listdir(outpath)) - 1 |
|
|
|
print(f"sampling scale for cfg is {opt.scale:.2f}") |
|
|
|
searcher = None |
|
if opt.use_neighbors: |
|
searcher = Searcher(opt.database) |
|
|
|
with torch.no_grad(): |
|
with model.ema_scope(): |
|
for n in trange(opt.n_iter, desc="Sampling"): |
|
all_samples = list() |
|
for prompts in tqdm(data, desc="data"): |
|
print("sampling prompts:", prompts) |
|
if isinstance(prompts, tuple): |
|
prompts = list(prompts) |
|
c = clip_text_encoder.encode(prompts) |
|
uc = None |
|
if searcher is not None: |
|
nn_dict = searcher(c, opt.knn) |
|
c = torch.cat([c, torch.from_numpy(nn_dict['nn_embeddings']).cuda()], dim=1) |
|
if opt.scale != 1.0: |
|
uc = torch.zeros_like(c) |
|
if isinstance(prompts, tuple): |
|
prompts = list(prompts) |
|
shape = [16, opt.H // 16, opt.W // 16] |
|
samples_ddim, _ = sampler.sample(S=opt.ddim_steps, |
|
conditioning=c, |
|
batch_size=c.shape[0], |
|
shape=shape, |
|
verbose=False, |
|
unconditional_guidance_scale=opt.scale, |
|
unconditional_conditioning=uc, |
|
eta=opt.ddim_eta, |
|
) |
|
|
|
x_samples_ddim = model.decode_first_stage(samples_ddim) |
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) |
|
|
|
for x_sample in x_samples_ddim: |
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') |
|
Image.fromarray(x_sample.astype(np.uint8)).save( |
|
os.path.join(sample_path, f"{base_count:05}.png")) |
|
base_count += 1 |
|
all_samples.append(x_samples_ddim) |
|
|
|
if not opt.skip_grid: |
|
|
|
grid = torch.stack(all_samples, 0) |
|
grid = rearrange(grid, 'n b c h w -> (n b) c h w') |
|
grid = make_grid(grid, nrow=n_rows) |
|
|
|
|
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() |
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png')) |
|
grid_count += 1 |
|
|
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.") |
|
|