Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 830.92 +/- 121.47
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee6f3228d93d1d8a59ddd2baa70c64e9efa19680b3b6586be9c2e05f772cebee
|
3 |
+
size 128999
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4cab8bf70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4cab90040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4cab900d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4cab90160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd4cab901f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd4cab90280>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd4cab90310>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4cab903a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd4cab90430>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4cab904c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4cab90550>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4cab905e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd4cab8cd80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 200000,
|
63 |
+
"_total_timesteps": 200000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679160230966857483,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAF3TXz6tXaM+kSbFPjkqXz/LLUa//KKOPabqlT+uhGm/TzCwvkFZCEBVAtQ/X5MYPmrHub7EAvk++QeuvVqwPj3D/04/c7nPPm8Guz/eu7Q9HKbnv+rpLL/o9WC/qmI8vR8Doz6uUbQ+MrSePsfwor9gkNm+r9aOP97KED3GL5a+Uld7PVKXBT7Yr+8+s/OwP3AvzD8Y+/c7+PFHv6QXL71S1Ty/jxJnvI/zgL/NFxs95UkrvzpiQDxqt8O+0uJbPdko/b/fqLU7uLtfv/92Qb0fA6M+rlG0PjK0nj6iGkk/07SPvpyvUT8wmF4+wblpPmQBgb3RxwQ+LwloPlFdiz4zjAY9V2oovhGWF79iOkg9hxekvri4nr7dCfa9fLEjvpB9UL7rT3O+G4udPhY1Yz5ma3a/BOSvPtYWbL6mNJS+HwOjPq5RtD4ytJ4+ohpJP/ylL7+Iuua+WoSkPjlGdj4IAf47bIwGPfCA8T5KhVY/IrXGP4LfRD73LEi/lD0yvQQxYr+UFww+WfH4vjC0fz7RZZC+/YJ7vJytdD5251s+rlj5v+4U+bx6N2G/XpCjPB8Doz6uUbQ+MrSePqIaST+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB6bpI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYfbJvQAAAAA/uvi/AAAAAD1T8T0AAAAAy0b7PwAAAABL/m+9AAAAAIXg5z8AAAAAIEe2vAAAAAD9dOS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArydttQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC5i6D0AAAAANrzvvwAAAABnao29AAAAAGV+9z8AAAAAbOz7PQAAAADEMe4/AAAAAAgZp7wAAAAA6wjqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAON+MjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBM5T29AAAAAIE62b8AAAAADcKsPQAAAADA2PA/AAAAAJx4TDwAAAAAiEr9PwAAAABeqwQ9AAAAAB8O6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUqqo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIAUePAAAAAAOkv6/AAAAAK7R2T0AAAAAVCrkPwAAAACcv7e7AAAAAIchAUAAAAAADCkHvgAAAACVVtq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIZa7mITGo+MAWyUTegDjAF0lEdAcFK6OYIBzXV9lChoBkdAiJfkB0ZFX2gHTegDaAhHQHBh6pkwvg51fZQoaAZHQIPSEunMt9RoB03oA2gIR0Bwuz9fkWAPdX2UKGgGR0CJh9XRPXTWaAdN6ANoCEdAcM9+9alk6XV9lChoBkdAhhQ95IH1OGgHTegDaAhHQHDs4iC8OCp1fZQoaAZHQIZOH7JnxrloB03oA2gIR0Bw90GX5WRzdX2UKGgGR0AWm4J/oaDPaAdLF2gIR0Bw+gNsnAqNdX2UKGgGR0Bid02m51/2aAdNAAFoCEdAcQ4F3Y+SsHV9lChoBkdAc8t+i8FpwmgHTaECaAhHQHERfJmukk91fZQoaAZHQGA1a+36Q/5oB0utaAhHQHEnOxSpBHF1fZQoaAZHQHskkbcXWOJoB03oA2gIR0Bxc3uSfUWmdX2UKGgGR0CJkeuVX3g2aAdN6ANoCEdAccgieumrKnV9lChoBkdAiS2MkQf6oGgHTegDaAhHQHHfH++/QBx1fZQoaAZHQIhyAFeOXE9oB03oA2gIR0Bx8jmA9V3mdX2UKGgGR0CHAxmNipeeaAdN6ANoCEdAch3SPluFYnV9lChoBkdACmZQ53kgfWgHSxVoCEdAciDuW8h9s3V9lChoBkdAhKzxu89Oh2gHTegDaAhHQHJJlTrE9+x1fZQoaAZHQIiHOuFHrhRoB03oA2gIR0ByZJMYdhiLdX2UKGgGR0CIvYErXlKcaAdN6ANoCEdAcoEgTh5xBHV9lChoBkdAY7d6BRQ792gHTRABaAhHQHKZxh+fAbh1fZQoaAZHQIZAVvsJIDpoB03oA2gIR0ByxSfthNM5dX2UKGgGR0CEcQIa99MLaAdN6ANoCEdAcu1UoKD02HV9lChoBkdAhs2f20zCUGgHTegDaAhHQHMYQd0aIep1fZQoaAZHQIeKUxASnLtoB03oA2gIR0BzKAYcebNKdX2UKGgGR0CH1CYpDu0DaAdN6ANoCEdAc0aDBuXNT3V9lChoBkdAhJgRWLgn+mgHTegDaAhHQHN1rHEMspZ1fZQoaAZHQIlbTAgxJuloB03oA2gIR0Bzs7C1qnFYdX2UKGgGR0CHT2z2vjffaAdN6ANoCEdAc8oZAprk83V9lChoBkdAhz6fQKKHf2gHTegDaAhHQHPnyQkona51fZQoaAZHQIgxhyOq//NoB03oA2gIR0B0EE3yZrpJdX2UKGgGR0CHTquJUHY6aAdN6ANoCEdAdDke05U96nV9lChoBkdAiHe7+cYqG2gHTegDaAhHQHRIiamXPZ91fZQoaAZHQIgpVL39JjFoB03oA2gIR0B0Zf5AQg9vdX2UKGgGR0CJWR8aXKKYaAdN6ANoCEdAdKBzgdfb9XV9lChoBkdAhV8jUNKAa2gHTegDaAhHQHTab2g39751fZQoaAZHQIgSWa2F36hoB03oA2gIR0B06oGW2PT5dX2UKGgGR0CKNn7SiM5waAdN6ANoCEdAdQhSteUpu3V9lChoBkdAiZl4mLLpzWgHTegDaAhHQHUwsMqjJuF1fZQoaAZHQInZQbVBlc1oB03oA2gIR0B1WoFTvRZ2dX2UKGgGR0CKf4aKk2xZaAdN6ANoCEdAdWo0kWykbnV9lChoBkdAhmhwsf7rLWgHTegDaAhHQHWVDqfOD8N1fZQoaAZHQIlOr5wfhddoB03oA2gIR0B10luEVWS2dX2UKGgGR0CJ0ZtqHoHLaAdN6ANoCEdAdfxDFZPl+3V9lChoBkdAh2bv/7zkIWgHTegDaAhHQHYMSdnTRY11fZQoaAZHQImUrG3nZChoB03oA2gIR0B2KmBFuvU0dX2UKGgGR0CHXFSk0rLAaAdN6ANoCEdAdlHuVX3g1nV9lChoBkdAiQvvKlpGnWgHTegDaAhHQHaAbZzxPO91fZQoaAZHQIw/SDbrTphoB03oA2gIR0B2lzNke6qbdX2UKGgGR0CEaciY9gWraAdN6ANoCEdAdsVVs1sLv3V9lChoBkdAhVOUiILw4WgHTegDaAhHQHbx/0mMOwx1fZQoaAZHQIpxTvkRzzVoB03oA2gIR0B3GvoUzsQedX2UKGgGR0AR4O5J9RaYaAdLFWgIR0B3HZ5Qgs9TdX2UKGgGR0CH9Xtoi9qUaAdN6ANoCEdAdyrEWqLjxXV9lChoBkdAh3Kbb+Lm62gHTegDaAhHQHdJARK6Fuh1fZQoaAZHQIX5q6z3RHBoB03oA2gIR0B3cSE0zj3mdX2UKGgGR0CIOgdJ8OTaaAdN6ANoCEdAd6+GSIP9UHV9lChoBkdAhh4bEYO2A2gHTegDaAhHQHfEF4gRsdl1fZQoaAZHQIiE2QwK0D5oB03oA2gIR0B36kXBP9DQdX2UKGgGR0CGogGTLW7OaAdN6ANoCEdAeBHO8kD6nHV9lChoBkdAgkSQ8OkLyGgHTegDaAhHQHg+kV8CxNZ1fZQoaAZHQIafqIUJv5xoB03oA2gIR0B4S8Tg2qDLdX2UKGgGR0CHfquWa+ewaAdN6ANoCEdAeGmjS5RTCXV9lChoBkdAgU0B4t6HCWgHTegDaAhHQHib6zqrzXl1fZQoaAZHQIjA6c7QswtoB03oA2gIR0B43274BV+7dX2UKGgGR0CE7ttJnQIEaAdN6ANoCEdAeO1TER8MNXV9lChoBkdAhS1lzuF6A2gHTegDaAhHQHkLzDGcWj51fZQoaAZHQIi0EPSUkfNoB03oA2gIR0B5NHk2gnMMdX2UKGgGR0CG/8j0L+glaAdN6ANoCEdAeV+l9jPOZHV9lChoBkdAiWae6Ae7tmgHTegDaAhHQHlswdS2php1fZQoaAZHQIrReJUHY6JoB03oA2gIR0B5j3oxHoX9dX2UKGgGR0CHs/XMhX8waAdN6ANoCEdAecvD7qIJq3V9lChoBkdAhhnOOCGvfWgHTegDaAhHQHoBdkBjnV51fZQoaAZHQIlh6Jj2BatoB03oA2gIR0B6DnjaPCEYdX2UKGgGR0CGZZCCz1K5aAdN6ANoCEdAeiwO3lS0jXV9lChoBkdAiR7CAtnPFGgHTegDaAhHQHpUT+Jgssh1fZQoaAZHQIb6hLZi/fxoB03oA2gIR0B6gFJTVDrrdX2UKGgGR0CItKETxoZiaAdN6ANoCEdAepAdV/+bVnV9lChoBkdAh7f3Fkxyn2gHTegDaAhHQHq76Hbh3q11fZQoaAZHQImXXo/zJ6poB03oA2gIR0B69V8Rcu8LdX2UKGgGR0CIR3j/dZaFaAdN6ANoCEdAeyGjYqXnhnV9lChoBkdAh8rBxPwd82gHTegDaAhHQHsuin1nM+x1fZQoaAZHQIiQqTY/Vy5oB03oA2gIR0B7TKBEroW6dX2UKGgGR0CG1bF2mpEQaAdN6ANoCEdAe3Rd4VymynV9lChoBkdAiYgs5OrQxGgHTegDaAhHQHuo3hbW3Bp1fZQoaAZHQIw30u+RHPNoB03oA2gIR0B7vGXY150KdX2UKGgGR0CKRjQkX1rZaAdN6ANoCEdAe+vqxC6YmnV9lChoBkdAjKal4cFQmGgHTegDaAhHQHwVFv60pmV1fZQoaAZHQIv226Ae7tloB03oA2gIR0B8QMKMNtqIdX2UKGgGR0CKZRScbzbwaAdN6ANoCEdAfE2pPhybQXV9lChoBkdAh1Md5Y5ksmgHTegDaAhHQHxrJiy6cy51fZQoaAZHQIpuabUgB91oB03oA2gIR0B8krVMEidKdX2UKGgGR0CJWP7qIJqqaAdN6ANoCEdAfNQ3ai9Iw3V9lChoBkdAhclcT8HfM2gHTegDaAhHQHzoYI4VARl1fZQoaAZHQGqJWDHwPRRoB00GAWgIR0B9Al9uxbB5dX2UKGgGR0CEwSxqO939aAdN6ANoCEdAfQvWiUPhAHV9lChoBkdAiEoId2gWamgHTegDaAhHQH00Mv24/eN1fZQoaAZHQIZKKYzBRANoB03oA2gIR0B9bbEMspXqdX2UKGgGR0CI2SFwDNhWaAdN6ANoCEdAfYIwn6VMVXV9lChoBkdAhIoxoRIz32gHTegDaAhHQH2L6eXiR4h1fZQoaAZHQIc2OVTrE+BoB03oA2gIR0B9v3tsvZh8dWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 6250,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b13f85bc13cf23e27f31ba9e6fb16da0f116dbc83deb2c1202731ec45d49c019
|
3 |
+
size 56062
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1276b8740133300efc795b3a65508596f5bb1591577fcfe40c989b5951b261c
|
3 |
+
size 56830
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4cab8bf70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4cab90040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4cab900d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4cab90160>", "_build": "<function ActorCriticPolicy._build at 0x7fd4cab901f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4cab90280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd4cab90310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4cab903a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4cab90430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4cab904c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4cab90550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4cab905e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd4cab8cd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679160230966857483, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAF3TXz6tXaM+kSbFPjkqXz/LLUa//KKOPabqlT+uhGm/TzCwvkFZCEBVAtQ/X5MYPmrHub7EAvk++QeuvVqwPj3D/04/c7nPPm8Guz/eu7Q9HKbnv+rpLL/o9WC/qmI8vR8Doz6uUbQ+MrSePsfwor9gkNm+r9aOP97KED3GL5a+Uld7PVKXBT7Yr+8+s/OwP3AvzD8Y+/c7+PFHv6QXL71S1Ty/jxJnvI/zgL/NFxs95UkrvzpiQDxqt8O+0uJbPdko/b/fqLU7uLtfv/92Qb0fA6M+rlG0PjK0nj6iGkk/07SPvpyvUT8wmF4+wblpPmQBgb3RxwQ+LwloPlFdiz4zjAY9V2oovhGWF79iOkg9hxekvri4nr7dCfa9fLEjvpB9UL7rT3O+G4udPhY1Yz5ma3a/BOSvPtYWbL6mNJS+HwOjPq5RtD4ytJ4+ohpJP/ylL7+Iuua+WoSkPjlGdj4IAf47bIwGPfCA8T5KhVY/IrXGP4LfRD73LEi/lD0yvQQxYr+UFww+WfH4vjC0fz7RZZC+/YJ7vJytdD5251s+rlj5v+4U+bx6N2G/XpCjPB8Doz6uUbQ+MrSePqIaST+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB6bpI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYfbJvQAAAAA/uvi/AAAAAD1T8T0AAAAAy0b7PwAAAABL/m+9AAAAAIXg5z8AAAAAIEe2vAAAAAD9dOS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArydttQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC5i6D0AAAAANrzvvwAAAABnao29AAAAAGV+9z8AAAAAbOz7PQAAAADEMe4/AAAAAAgZp7wAAAAA6wjqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAON+MjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBM5T29AAAAAIE62b8AAAAADcKsPQAAAADA2PA/AAAAAJx4TDwAAAAAiEr9PwAAAABeqwQ9AAAAAB8O6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUqqo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIAUePAAAAAAOkv6/AAAAAK7R2T0AAAAAVCrkPwAAAACcv7e7AAAAAIchAUAAAAAADCkHvgAAAACVVtq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIZa7mITGo+MAWyUTegDjAF0lEdAcFK6OYIBzXV9lChoBkdAiJfkB0ZFX2gHTegDaAhHQHBh6pkwvg51fZQoaAZHQIPSEunMt9RoB03oA2gIR0Bwuz9fkWAPdX2UKGgGR0CJh9XRPXTWaAdN6ANoCEdAcM9+9alk6XV9lChoBkdAhhQ95IH1OGgHTegDaAhHQHDs4iC8OCp1fZQoaAZHQIZOH7JnxrloB03oA2gIR0Bw90GX5WRzdX2UKGgGR0AWm4J/oaDPaAdLF2gIR0Bw+gNsnAqNdX2UKGgGR0Bid02m51/2aAdNAAFoCEdAcQ4F3Y+SsHV9lChoBkdAc8t+i8FpwmgHTaECaAhHQHERfJmukk91fZQoaAZHQGA1a+36Q/5oB0utaAhHQHEnOxSpBHF1fZQoaAZHQHskkbcXWOJoB03oA2gIR0Bxc3uSfUWmdX2UKGgGR0CJkeuVX3g2aAdN6ANoCEdAccgieumrKnV9lChoBkdAiS2MkQf6oGgHTegDaAhHQHHfH++/QBx1fZQoaAZHQIhyAFeOXE9oB03oA2gIR0Bx8jmA9V3mdX2UKGgGR0CHAxmNipeeaAdN6ANoCEdAch3SPluFYnV9lChoBkdACmZQ53kgfWgHSxVoCEdAciDuW8h9s3V9lChoBkdAhKzxu89Oh2gHTegDaAhHQHJJlTrE9+x1fZQoaAZHQIiHOuFHrhRoB03oA2gIR0ByZJMYdhiLdX2UKGgGR0CIvYErXlKcaAdN6ANoCEdAcoEgTh5xBHV9lChoBkdAY7d6BRQ792gHTRABaAhHQHKZxh+fAbh1fZQoaAZHQIZAVvsJIDpoB03oA2gIR0ByxSfthNM5dX2UKGgGR0CEcQIa99MLaAdN6ANoCEdAcu1UoKD02HV9lChoBkdAhs2f20zCUGgHTegDaAhHQHMYQd0aIep1fZQoaAZHQIeKUxASnLtoB03oA2gIR0BzKAYcebNKdX2UKGgGR0CH1CYpDu0DaAdN6ANoCEdAc0aDBuXNT3V9lChoBkdAhJgRWLgn+mgHTegDaAhHQHN1rHEMspZ1fZQoaAZHQIlbTAgxJuloB03oA2gIR0Bzs7C1qnFYdX2UKGgGR0CHT2z2vjffaAdN6ANoCEdAc8oZAprk83V9lChoBkdAhz6fQKKHf2gHTegDaAhHQHPnyQkona51fZQoaAZHQIgxhyOq//NoB03oA2gIR0B0EE3yZrpJdX2UKGgGR0CHTquJUHY6aAdN6ANoCEdAdDke05U96nV9lChoBkdAiHe7+cYqG2gHTegDaAhHQHRIiamXPZ91fZQoaAZHQIgpVL39JjFoB03oA2gIR0B0Zf5AQg9vdX2UKGgGR0CJWR8aXKKYaAdN6ANoCEdAdKBzgdfb9XV9lChoBkdAhV8jUNKAa2gHTegDaAhHQHTab2g39751fZQoaAZHQIgSWa2F36hoB03oA2gIR0B06oGW2PT5dX2UKGgGR0CKNn7SiM5waAdN6ANoCEdAdQhSteUpu3V9lChoBkdAiZl4mLLpzWgHTegDaAhHQHUwsMqjJuF1fZQoaAZHQInZQbVBlc1oB03oA2gIR0B1WoFTvRZ2dX2UKGgGR0CKf4aKk2xZaAdN6ANoCEdAdWo0kWykbnV9lChoBkdAhmhwsf7rLWgHTegDaAhHQHWVDqfOD8N1fZQoaAZHQIlOr5wfhddoB03oA2gIR0B10luEVWS2dX2UKGgGR0CJ0ZtqHoHLaAdN6ANoCEdAdfxDFZPl+3V9lChoBkdAh2bv/7zkIWgHTegDaAhHQHYMSdnTRY11fZQoaAZHQImUrG3nZChoB03oA2gIR0B2KmBFuvU0dX2UKGgGR0CHXFSk0rLAaAdN6ANoCEdAdlHuVX3g1nV9lChoBkdAiQvvKlpGnWgHTegDaAhHQHaAbZzxPO91fZQoaAZHQIw/SDbrTphoB03oA2gIR0B2lzNke6qbdX2UKGgGR0CEaciY9gWraAdN6ANoCEdAdsVVs1sLv3V9lChoBkdAhVOUiILw4WgHTegDaAhHQHbx/0mMOwx1fZQoaAZHQIpxTvkRzzVoB03oA2gIR0B3GvoUzsQedX2UKGgGR0AR4O5J9RaYaAdLFWgIR0B3HZ5Qgs9TdX2UKGgGR0CH9Xtoi9qUaAdN6ANoCEdAdyrEWqLjxXV9lChoBkdAh3Kbb+Lm62gHTegDaAhHQHdJARK6Fuh1fZQoaAZHQIX5q6z3RHBoB03oA2gIR0B3cSE0zj3mdX2UKGgGR0CIOgdJ8OTaaAdN6ANoCEdAd6+GSIP9UHV9lChoBkdAhh4bEYO2A2gHTegDaAhHQHfEF4gRsdl1fZQoaAZHQIiE2QwK0D5oB03oA2gIR0B36kXBP9DQdX2UKGgGR0CGogGTLW7OaAdN6ANoCEdAeBHO8kD6nHV9lChoBkdAgkSQ8OkLyGgHTegDaAhHQHg+kV8CxNZ1fZQoaAZHQIafqIUJv5xoB03oA2gIR0B4S8Tg2qDLdX2UKGgGR0CHfquWa+ewaAdN6ANoCEdAeGmjS5RTCXV9lChoBkdAgU0B4t6HCWgHTegDaAhHQHib6zqrzXl1fZQoaAZHQIjA6c7QswtoB03oA2gIR0B43274BV+7dX2UKGgGR0CE7ttJnQIEaAdN6ANoCEdAeO1TER8MNXV9lChoBkdAhS1lzuF6A2gHTegDaAhHQHkLzDGcWj51fZQoaAZHQIi0EPSUkfNoB03oA2gIR0B5NHk2gnMMdX2UKGgGR0CG/8j0L+glaAdN6ANoCEdAeV+l9jPOZHV9lChoBkdAiWae6Ae7tmgHTegDaAhHQHlswdS2php1fZQoaAZHQIrReJUHY6JoB03oA2gIR0B5j3oxHoX9dX2UKGgGR0CHs/XMhX8waAdN6ANoCEdAecvD7qIJq3V9lChoBkdAhhnOOCGvfWgHTegDaAhHQHoBdkBjnV51fZQoaAZHQIlh6Jj2BatoB03oA2gIR0B6DnjaPCEYdX2UKGgGR0CGZZCCz1K5aAdN6ANoCEdAeiwO3lS0jXV9lChoBkdAiR7CAtnPFGgHTegDaAhHQHpUT+Jgssh1fZQoaAZHQIb6hLZi/fxoB03oA2gIR0B6gFJTVDrrdX2UKGgGR0CItKETxoZiaAdN6ANoCEdAepAdV/+bVnV9lChoBkdAh7f3Fkxyn2gHTegDaAhHQHq76Hbh3q11fZQoaAZHQImXXo/zJ6poB03oA2gIR0B69V8Rcu8LdX2UKGgGR0CIR3j/dZaFaAdN6ANoCEdAeyGjYqXnhnV9lChoBkdAh8rBxPwd82gHTegDaAhHQHsuin1nM+x1fZQoaAZHQIiQqTY/Vy5oB03oA2gIR0B7TKBEroW6dX2UKGgGR0CG1bF2mpEQaAdN6ANoCEdAe3Rd4VymynV9lChoBkdAiYgs5OrQxGgHTegDaAhHQHuo3hbW3Bp1fZQoaAZHQIw30u+RHPNoB03oA2gIR0B7vGXY150KdX2UKGgGR0CKRjQkX1rZaAdN6ANoCEdAe+vqxC6YmnV9lChoBkdAjKal4cFQmGgHTegDaAhHQHwVFv60pmV1fZQoaAZHQIv226Ae7tloB03oA2gIR0B8QMKMNtqIdX2UKGgGR0CKZRScbzbwaAdN6ANoCEdAfE2pPhybQXV9lChoBkdAh1Md5Y5ksmgHTegDaAhHQHxrJiy6cy51fZQoaAZHQIpuabUgB91oB03oA2gIR0B8krVMEidKdX2UKGgGR0CJWP7qIJqqaAdN6ANoCEdAfNQ3ai9Iw3V9lChoBkdAhclcT8HfM2gHTegDaAhHQHzoYI4VARl1fZQoaAZHQGqJWDHwPRRoB00GAWgIR0B9Al9uxbB5dX2UKGgGR0CEwSxqO939aAdN6ANoCEdAfQvWiUPhAHV9lChoBkdAiEoId2gWamgHTegDaAhHQH00Mv24/eN1fZQoaAZHQIZKKYzBRANoB03oA2gIR0B9bbEMspXqdX2UKGgGR0CI2SFwDNhWaAdN6ANoCEdAfYIwn6VMVXV9lChoBkdAhIoxoRIz32gHTegDaAhHQH2L6eXiR4h1fZQoaAZHQIc2OVTrE+BoB03oA2gIR0B9v3tsvZh8dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 6250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (247 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 830.9236551485956, "std_reward": 121.47224380939466, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-18T17:50:45.712842"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7c944235a7d20cde9c1528a6235e3cec07fc67c53474c04fcbdfc43c038d143
|
3 |
+
size 2136
|