OriLib commited on
Commit
6f3f40c
1 Parent(s): e78c703

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -8
README.md CHANGED
@@ -100,16 +100,57 @@ wget https://huggingface.co/briaai/RMBG-1.4/resolve/main/requirements.txt && pip
100
 
101
  ## Usage
102
 
103
- either load the model
 
 
 
 
 
 
 
 
 
104
  ```python
105
  from transformers import AutoModelForImageSegmentation
106
  model = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-1.4",trust_remote_code=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
  ```
108
 
109
- or load the pipeline
110
- ```python
111
- from transformers import pipeline
112
- pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
113
- pillow_mask = pipe("img_path",return_mask = True) # outputs a pillow mask
114
- pillow_image = pipe("image_path") # applies mask on input and returns a pillow image
115
- ```
 
100
 
101
  ## Usage
102
 
103
+ Either load the pipeline
104
+ ```python
105
+ from transformers import pipeline
106
+ image_path = "https://farm5.staticflickr.com/4007/4322154488_997e69e4cf_z.jpg"
107
+ pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
108
+ pillow_mask = pipe(img_path, return_mask = True) # outputs a pillow mask
109
+ pillow_image = pipe(image_path) # applies mask on input and returns a pillow image
110
+ ```
111
+
112
+ Or load the model
113
  ```python
114
  from transformers import AutoModelForImageSegmentation
115
  model = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-1.4",trust_remote_code=True)
116
+ def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor:
117
+ if len(im.shape) < 3:
118
+ im = im[:, :, np.newaxis]
119
+ # orig_im_size=im.shape[0:2]
120
+ im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
121
+ im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear')
122
+ image = torch.divide(im_tensor,255.0)
123
+ image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
124
+ return image
125
+
126
+ def postprocess_image(result: torch.Tensor, im_size: list)-> np.ndarray:
127
+ result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0)
128
+ ma = torch.max(result)
129
+ mi = torch.min(result)
130
+ result = (result-mi)/(ma-mi)
131
+ im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
132
+ im_array = np.squeeze(im_array)
133
+ return im_array
134
+
135
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
136
+ model.to(device)
137
+
138
+ # prepare input
139
+ image_path = "https://farm5.staticflickr.com/4007/4322154488_997e69e4cf_z.jpg"
140
+ orig_im = io.imread(im_path)
141
+ orig_im_size = orig_im.shape[0:2]
142
+ image = preprocess_image(orig_im, model_input_size).to(device)
143
+
144
+ # inference
145
+ result=model(image)
146
+
147
+ # post process
148
+ result_image = postprocess_image(result[0][0], orig_im_size)
149
+
150
+ # save result
151
+ pil_im = Image.fromarray(result_image)
152
+ no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
153
+ orig_image = Image.open(im_path)
154
+ no_bg_image.paste(orig_image, mask=pil_im)
155
  ```
156