|
import torch, os |
|
import torch.nn.functional as F |
|
from torchvision.transforms.functional import normalize |
|
import numpy as np |
|
from transformers import Pipeline |
|
from transformers.image_utils import load_image |
|
from skimage import io |
|
from PIL import Image |
|
|
|
class RMBGPipe(Pipeline): |
|
def __init__(self,**kwargs): |
|
Pipeline.__init__(self,**kwargs) |
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
self.model.to(self.device) |
|
self.model.eval() |
|
|
|
def _sanitize_parameters(self, **kwargs): |
|
|
|
preprocess_kwargs = {} |
|
postprocess_kwargs = {} |
|
if "model_input_size" in kwargs : |
|
preprocess_kwargs["model_input_size"] = kwargs["model_input_size"] |
|
if "return_mask" in kwargs: |
|
postprocess_kwargs["return_mask"] = kwargs["return_mask"] |
|
return preprocess_kwargs, {}, postprocess_kwargs |
|
|
|
def preprocess(self,input_image,model_input_size: list=[1024,1024]): |
|
|
|
orig_im = load_image(input_image) |
|
orig_im = np.array(orig_im) |
|
orig_im_size = orig_im.shape[0:2] |
|
preprocessed_image = self.preprocess_image(orig_im, model_input_size).to(self.device) |
|
inputs = { |
|
"preprocessed_image":preprocessed_image, |
|
"orig_im_size":orig_im_size, |
|
"input_image" : input_image |
|
} |
|
return inputs |
|
|
|
def _forward(self,inputs): |
|
result = self.model(inputs.pop("preprocessed_image")) |
|
inputs["result"] = result |
|
return inputs |
|
|
|
def postprocess(self,inputs,return_mask:bool=False ): |
|
result = inputs.pop("result") |
|
orig_im_size = inputs.pop("orig_im_size") |
|
input_image = inputs.pop("input_image") |
|
result_image = self.postprocess_image(result[0][0], orig_im_size) |
|
pil_im = Image.fromarray(result_image) |
|
if return_mask ==True : |
|
return pil_im |
|
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0)) |
|
input_image = load_image(input_image) |
|
no_bg_image.paste(input_image, mask=pil_im) |
|
return no_bg_image |
|
|
|
|
|
def preprocess_image(self,im: np.ndarray, model_input_size: list=[1024,1024]) -> torch.Tensor: |
|
|
|
if len(im.shape) < 3: |
|
im = im[:, :, np.newaxis] |
|
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1) |
|
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear') |
|
image = torch.divide(im_tensor,255.0) |
|
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0]) |
|
return image |
|
|
|
def postprocess_image(self,result: torch.Tensor, im_size: list)-> np.ndarray: |
|
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0) |
|
ma = torch.max(result) |
|
mi = torch.min(result) |
|
result = (result-mi)/(ma-mi) |
|
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8) |
|
im_array = np.squeeze(im_array) |
|
return im_array |
|
|