brennonatal
commited on
Commit
•
caea7c0
1
Parent(s):
b375830
inference api
Browse files- README.md +1 -9
- app.py +0 -105
- diffusion_pytorch_model.safetensors +0 -3
- requirements.txt +0 -5
README.md
CHANGED
@@ -1,12 +1,4 @@
|
|
1 |
---
|
2 |
-
title: flux-controlnet-upscaler
|
3 |
-
emoji: 🐳
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: green
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.1.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
base_model:
|
11 |
- black-forest-labs/FLUX.1-dev
|
12 |
library_name: diffusers
|
@@ -14,7 +6,7 @@ license: other
|
|
14 |
license_name: flux-1-dev-non-commercial-license
|
15 |
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
|
16 |
pipeline_tag: image-to-image
|
17 |
-
inference:
|
18 |
tags:
|
19 |
- ControlNet
|
20 |
- super-resolution
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
base_model:
|
3 |
- black-forest-labs/FLUX.1-dev
|
4 |
library_name: diffusers
|
|
|
6 |
license_name: flux-1-dev-non-commercial-license
|
7 |
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
|
8 |
pipeline_tag: image-to-image
|
9 |
+
inference: True
|
10 |
tags:
|
11 |
- ControlNet
|
12 |
- super-resolution
|
app.py
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import spaces # Ensure this is correctly imported based on Hugging Face's SDK
|
4 |
-
import torch
|
5 |
-
from diffusers import FluxControlNetModel, FluxControlNetPipeline
|
6 |
-
from diffusers.utils import load_image
|
7 |
-
from gradio_imageslider import ImageSlider
|
8 |
-
from PIL import Image
|
9 |
-
|
10 |
-
# Initialize global variables for the model and pipeline
|
11 |
-
controlnet = None
|
12 |
-
pipe = None
|
13 |
-
|
14 |
-
|
15 |
-
@spaces.GPU # Decorator to ensure this function runs on GPU
|
16 |
-
def initialize_pipeline():
|
17 |
-
global controlnet, pipe
|
18 |
-
if controlnet is None or pipe is None:
|
19 |
-
# Load the ControlNet model with appropriate dtype
|
20 |
-
controlnet = FluxControlNetModel.from_pretrained(
|
21 |
-
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.float16
|
22 |
-
)
|
23 |
-
|
24 |
-
# Load the Flux ControlNet Pipeline
|
25 |
-
pipe = FluxControlNetPipeline.from_pretrained(
|
26 |
-
"black-forest-labs/FLUX.1-dev",
|
27 |
-
controlnet=controlnet,
|
28 |
-
torch_dtype=torch.float16,
|
29 |
-
)
|
30 |
-
|
31 |
-
# Move the pipeline to GPU
|
32 |
-
pipe.to("cuda")
|
33 |
-
return pipe
|
34 |
-
|
35 |
-
|
36 |
-
def process_image(input_image):
|
37 |
-
try:
|
38 |
-
if input_image is None:
|
39 |
-
raise gr.Error("Please provide an image to upscale.")
|
40 |
-
|
41 |
-
# Convert the input image (numpy array) to PIL Image
|
42 |
-
pil_image = Image.fromarray(input_image)
|
43 |
-
|
44 |
-
# Resize the image by a factor of 4 for upscaling
|
45 |
-
w, h = pil_image.size
|
46 |
-
control_image = pil_image.resize((w * 4, h * 4))
|
47 |
-
|
48 |
-
# Initialize the pipeline (ensures it's loaded on GPU)
|
49 |
-
pipe = initialize_pipeline()
|
50 |
-
|
51 |
-
# Perform upscaling using the Flux pipeline
|
52 |
-
upscaled_image = pipe(
|
53 |
-
prompt="", # Empty prompt as per your example
|
54 |
-
control_image=control_image,
|
55 |
-
controlnet_conditioning_scale=0.6,
|
56 |
-
num_inference_steps=28,
|
57 |
-
guidance_scale=3.5,
|
58 |
-
height=control_image.size[1],
|
59 |
-
width=control_image.size[0],
|
60 |
-
).images[0]
|
61 |
-
|
62 |
-
# Convert the upscaled PIL Image to a numpy array
|
63 |
-
result_array = np.array(upscaled_image)
|
64 |
-
|
65 |
-
return [input_image, result_array]
|
66 |
-
except Exception as e:
|
67 |
-
raise gr.Error(f"An error occurred during processing: {e}")
|
68 |
-
|
69 |
-
|
70 |
-
# Define the HTML title and description
|
71 |
-
title = """<h1 align="center">Flux Upscaler</h1>
|
72 |
-
<p><center>Upscales your images by 4x using Flux ControlNet Pipeline</center></p>
|
73 |
-
<p><center>
|
74 |
-
<a href="https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler" target="_blank">[ControlNet Model]</a>
|
75 |
-
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" target="_blank">[Flux Pipeline]</a>
|
76 |
-
</center></p>
|
77 |
-
<br/>
|
78 |
-
<p>This application leverages the Flux ControlNet Pipeline for high-quality image upscaling.</p>
|
79 |
-
"""
|
80 |
-
|
81 |
-
# Define the Gradio Blocks interface
|
82 |
-
with gr.Blocks() as demo:
|
83 |
-
|
84 |
-
gr.HTML(title)
|
85 |
-
|
86 |
-
with gr.Row():
|
87 |
-
with gr.Column(scale=1):
|
88 |
-
input_image = gr.Image(label="Input Image", type="numpy")
|
89 |
-
process_btn = gr.Button(value="Upscale Image", variant="primary")
|
90 |
-
with gr.Column(scale=1):
|
91 |
-
output_slider = ImageSlider(label="Before / After", type="numpy")
|
92 |
-
|
93 |
-
process_btn.click(fn=process_image, inputs=[input_image], outputs=output_slider)
|
94 |
-
|
95 |
-
# Add examples (ensure these images are available in your repository)
|
96 |
-
gr.Examples(
|
97 |
-
examples=["examples/image1.png", "examples/image2.png"],
|
98 |
-
inputs=input_image,
|
99 |
-
outputs=output_slider,
|
100 |
-
fn=process_image,
|
101 |
-
cache_examples=True,
|
102 |
-
)
|
103 |
-
|
104 |
-
# Launch the Gradio app
|
105 |
-
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_pytorch_model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2a7ea24d2037ff2aa4d25f8b4ce9fe7e739a2cfe6b9d05106788005d5058c8ca
|
3 |
-
size 3583232168
|
|
|
|
|
|
|
|
requirements.txt
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
torch>=1.9.0
|
2 |
-
diffusers>=0.11.1
|
3 |
-
transformers>=4.15.0
|
4 |
-
accelerate
|
5 |
-
Pillow
|
|
|
|
|
|
|
|
|
|
|
|