brandonRivas
commited on
End of training
Browse files
README.md
CHANGED
@@ -23,11 +23,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
23 |
|
24 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
-
- Loss: 0.
|
27 |
-
- Precision: 0.
|
28 |
-
- Recall: 0.
|
29 |
-
- F1: 0.
|
30 |
-
- Accuracy: 0.
|
31 |
|
32 |
## Model description
|
33 |
|
@@ -59,113 +59,113 @@ The following hyperparameters were used during training:
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
-
| 2.
|
63 |
-
| 1.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
| 0.
|
141 |
-
| 0.
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
| 0.
|
149 |
-
| 0.
|
150 |
-
| 0.
|
151 |
-
| 0.037 | 5.8824 | 1800 | 0.0809 | 0.
|
152 |
-
| 0.
|
153 |
-
| 0.
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.0273 | 6.7320 | 2060 | 0.0789 | 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
|
170 |
|
171 |
### Framework versions
|
|
|
23 |
|
24 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
|
25 |
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.0786
|
27 |
+
- Precision: 0.9389
|
28 |
+
- Recall: 0.9557
|
29 |
+
- F1: 0.9472
|
30 |
+
- Accuracy: 0.9810
|
31 |
|
32 |
## Model description
|
33 |
|
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
+
| 2.567 | 0.0654 | 20 | 1.4307 | 0.0 | 0.0 | 0.0 | 0.7180 |
|
63 |
+
| 1.392 | 0.1307 | 40 | 1.1419 | 0.0 | 0.0 | 0.0 | 0.7180 |
|
64 |
+
| 0.9085 | 0.1961 | 60 | 0.5466 | 0.7664 | 0.5467 | 0.6382 | 0.8664 |
|
65 |
+
| 0.4864 | 0.2614 | 80 | 0.2794 | 0.8113 | 0.7621 | 0.7859 | 0.9238 |
|
66 |
+
| 0.3224 | 0.3268 | 100 | 0.1809 | 0.8392 | 0.8706 | 0.8546 | 0.9467 |
|
67 |
+
| 0.266 | 0.3922 | 120 | 0.2126 | 0.7775 | 0.9105 | 0.8387 | 0.9367 |
|
68 |
+
| 0.1964 | 0.4575 | 140 | 0.1280 | 0.8738 | 0.9127 | 0.8929 | 0.9621 |
|
69 |
+
| 0.1648 | 0.5229 | 160 | 0.1186 | 0.8761 | 0.9282 | 0.9014 | 0.9646 |
|
70 |
+
| 0.1481 | 0.5882 | 180 | 0.1135 | 0.8910 | 0.9379 | 0.9138 | 0.9669 |
|
71 |
+
| 0.1339 | 0.6536 | 200 | 0.1108 | 0.8935 | 0.9402 | 0.9162 | 0.9684 |
|
72 |
+
| 0.1465 | 0.7190 | 220 | 0.0967 | 0.9044 | 0.9333 | 0.9187 | 0.9716 |
|
73 |
+
| 0.1351 | 0.7843 | 240 | 0.1299 | 0.8653 | 0.9522 | 0.9067 | 0.9618 |
|
74 |
+
| 0.1182 | 0.8497 | 260 | 0.0904 | 0.9148 | 0.9424 | 0.9284 | 0.9742 |
|
75 |
+
| 0.1383 | 0.9150 | 280 | 0.1042 | 0.8884 | 0.9392 | 0.9131 | 0.9694 |
|
76 |
+
| 0.1291 | 0.9804 | 300 | 0.0928 | 0.9132 | 0.9408 | 0.9268 | 0.9735 |
|
77 |
+
| 0.106 | 1.0458 | 320 | 0.1058 | 0.8876 | 0.9344 | 0.9104 | 0.9680 |
|
78 |
+
| 0.0893 | 1.1111 | 340 | 0.0940 | 0.9100 | 0.9526 | 0.9308 | 0.9730 |
|
79 |
+
| 0.1006 | 1.1765 | 360 | 0.1036 | 0.8918 | 0.9539 | 0.9218 | 0.9700 |
|
80 |
+
| 0.099 | 1.2418 | 380 | 0.0875 | 0.9265 | 0.9385 | 0.9325 | 0.9757 |
|
81 |
+
| 0.1103 | 1.3072 | 400 | 0.0804 | 0.9293 | 0.9460 | 0.9376 | 0.9780 |
|
82 |
+
| 0.1205 | 1.3725 | 420 | 0.0962 | 0.8935 | 0.9368 | 0.9146 | 0.9713 |
|
83 |
+
| 0.0939 | 1.4379 | 440 | 0.0914 | 0.9228 | 0.9411 | 0.9319 | 0.9765 |
|
84 |
+
| 0.0955 | 1.5033 | 460 | 0.0846 | 0.9112 | 0.9287 | 0.9199 | 0.9719 |
|
85 |
+
| 0.0911 | 1.5686 | 480 | 0.0857 | 0.9172 | 0.9546 | 0.9355 | 0.9754 |
|
86 |
+
| 0.0888 | 1.6340 | 500 | 0.0872 | 0.9192 | 0.9471 | 0.9329 | 0.9759 |
|
87 |
+
| 0.0792 | 1.6993 | 520 | 0.0892 | 0.9102 | 0.9595 | 0.9342 | 0.9751 |
|
88 |
+
| 0.0778 | 1.7647 | 540 | 0.0888 | 0.9006 | 0.9318 | 0.9159 | 0.9723 |
|
89 |
+
| 0.0893 | 1.8301 | 560 | 0.0798 | 0.9200 | 0.9576 | 0.9384 | 0.9778 |
|
90 |
+
| 0.0909 | 1.8954 | 580 | 0.0807 | 0.9194 | 0.9518 | 0.9353 | 0.9762 |
|
91 |
+
| 0.0906 | 1.9608 | 600 | 0.0969 | 0.9030 | 0.9458 | 0.9239 | 0.9708 |
|
92 |
+
| 0.0761 | 2.0261 | 620 | 0.0814 | 0.9296 | 0.9573 | 0.9432 | 0.9778 |
|
93 |
+
| 0.0807 | 2.0915 | 640 | 0.0808 | 0.9223 | 0.9600 | 0.9408 | 0.9781 |
|
94 |
+
| 0.0571 | 2.1569 | 660 | 0.0759 | 0.9349 | 0.9485 | 0.9417 | 0.9786 |
|
95 |
+
| 0.0899 | 2.2222 | 680 | 0.0786 | 0.9335 | 0.9544 | 0.9438 | 0.9790 |
|
96 |
+
| 0.0789 | 2.2876 | 700 | 0.0833 | 0.9135 | 0.9410 | 0.9271 | 0.9755 |
|
97 |
+
| 0.0639 | 2.3529 | 720 | 0.0758 | 0.9312 | 0.9496 | 0.9403 | 0.9796 |
|
98 |
+
| 0.0664 | 2.4183 | 740 | 0.0785 | 0.9245 | 0.9512 | 0.9376 | 0.9779 |
|
99 |
+
| 0.0886 | 2.4837 | 760 | 0.0712 | 0.9331 | 0.9589 | 0.9459 | 0.9806 |
|
100 |
+
| 0.0635 | 2.5490 | 780 | 0.0757 | 0.9344 | 0.9591 | 0.9465 | 0.9809 |
|
101 |
+
| 0.0769 | 2.6144 | 800 | 0.0737 | 0.9332 | 0.9567 | 0.9448 | 0.9805 |
|
102 |
+
| 0.0633 | 2.6797 | 820 | 0.0704 | 0.9421 | 0.9493 | 0.9457 | 0.9810 |
|
103 |
+
| 0.0709 | 2.7451 | 840 | 0.0762 | 0.9279 | 0.9551 | 0.9413 | 0.9798 |
|
104 |
+
| 0.0604 | 2.8105 | 860 | 0.0744 | 0.9347 | 0.9538 | 0.9441 | 0.9800 |
|
105 |
+
| 0.0667 | 2.8758 | 880 | 0.0751 | 0.9315 | 0.9537 | 0.9425 | 0.9795 |
|
106 |
+
| 0.0631 | 2.9412 | 900 | 0.0824 | 0.9216 | 0.9593 | 0.9401 | 0.9778 |
|
107 |
+
| 0.0643 | 3.0065 | 920 | 0.0763 | 0.9330 | 0.9649 | 0.9487 | 0.9809 |
|
108 |
+
| 0.0469 | 3.0719 | 940 | 0.0779 | 0.9291 | 0.9625 | 0.9455 | 0.9801 |
|
109 |
+
| 0.0492 | 3.1373 | 960 | 0.0902 | 0.9220 | 0.9546 | 0.9380 | 0.9762 |
|
110 |
+
| 0.0486 | 3.2026 | 980 | 0.0801 | 0.9236 | 0.9497 | 0.9365 | 0.9770 |
|
111 |
+
| 0.0616 | 3.2680 | 1000 | 0.0737 | 0.9325 | 0.9533 | 0.9428 | 0.9793 |
|
112 |
+
| 0.057 | 3.3333 | 1020 | 0.0715 | 0.9356 | 0.9598 | 0.9475 | 0.9802 |
|
113 |
+
| 0.0513 | 3.3987 | 1040 | 0.0875 | 0.9166 | 0.9582 | 0.9370 | 0.9770 |
|
114 |
+
| 0.0629 | 3.4641 | 1060 | 0.0840 | 0.9189 | 0.9536 | 0.9359 | 0.9761 |
|
115 |
+
| 0.054 | 3.5294 | 1080 | 0.0755 | 0.9244 | 0.9500 | 0.9370 | 0.9782 |
|
116 |
+
| 0.0508 | 3.5948 | 1100 | 0.0755 | 0.9323 | 0.9588 | 0.9454 | 0.9795 |
|
117 |
+
| 0.0434 | 3.6601 | 1120 | 0.0790 | 0.9245 | 0.9488 | 0.9365 | 0.9788 |
|
118 |
+
| 0.0612 | 3.7255 | 1140 | 0.0732 | 0.9334 | 0.9594 | 0.9462 | 0.9804 |
|
119 |
+
| 0.0538 | 3.7908 | 1160 | 0.0729 | 0.9362 | 0.9551 | 0.9456 | 0.9815 |
|
120 |
+
| 0.0662 | 3.8562 | 1180 | 0.0814 | 0.9235 | 0.9558 | 0.9394 | 0.9779 |
|
121 |
+
| 0.0611 | 3.9216 | 1200 | 0.0820 | 0.9293 | 0.9558 | 0.9424 | 0.9788 |
|
122 |
+
| 0.0632 | 3.9869 | 1220 | 0.0747 | 0.9287 | 0.9616 | 0.9448 | 0.9804 |
|
123 |
+
| 0.0449 | 4.0523 | 1240 | 0.0743 | 0.9335 | 0.9595 | 0.9463 | 0.9804 |
|
124 |
+
| 0.0363 | 4.1176 | 1260 | 0.0744 | 0.9314 | 0.9561 | 0.9436 | 0.9801 |
|
125 |
+
| 0.042 | 4.1830 | 1280 | 0.0741 | 0.9360 | 0.9582 | 0.9470 | 0.9810 |
|
126 |
+
| 0.0515 | 4.2484 | 1300 | 0.0743 | 0.9344 | 0.9545 | 0.9443 | 0.9807 |
|
127 |
+
| 0.0422 | 4.3137 | 1320 | 0.0747 | 0.9407 | 0.9516 | 0.9462 | 0.9810 |
|
128 |
+
| 0.0466 | 4.3791 | 1340 | 0.0711 | 0.9369 | 0.9568 | 0.9468 | 0.9813 |
|
129 |
+
| 0.0387 | 4.4444 | 1360 | 0.0766 | 0.9302 | 0.9558 | 0.9429 | 0.9797 |
|
130 |
+
| 0.0333 | 4.5098 | 1380 | 0.0814 | 0.9269 | 0.9587 | 0.9425 | 0.9791 |
|
131 |
+
| 0.0475 | 4.5752 | 1400 | 0.0770 | 0.9287 | 0.9472 | 0.9378 | 0.9794 |
|
132 |
+
| 0.0422 | 4.6405 | 1420 | 0.0782 | 0.9320 | 0.9615 | 0.9465 | 0.9801 |
|
133 |
+
| 0.0366 | 4.7059 | 1440 | 0.0820 | 0.9323 | 0.9546 | 0.9433 | 0.9790 |
|
134 |
+
| 0.0457 | 4.7712 | 1460 | 0.0801 | 0.9353 | 0.9564 | 0.9457 | 0.9806 |
|
135 |
+
| 0.0438 | 4.8366 | 1480 | 0.0778 | 0.9352 | 0.9572 | 0.9461 | 0.9804 |
|
136 |
+
| 0.0468 | 4.9020 | 1500 | 0.0749 | 0.9333 | 0.9603 | 0.9466 | 0.9806 |
|
137 |
+
| 0.054 | 4.9673 | 1520 | 0.0785 | 0.9272 | 0.9519 | 0.9394 | 0.9790 |
|
138 |
+
| 0.0346 | 5.0327 | 1540 | 0.0801 | 0.9321 | 0.9548 | 0.9433 | 0.9798 |
|
139 |
+
| 0.0348 | 5.0980 | 1560 | 0.0767 | 0.9360 | 0.9568 | 0.9463 | 0.9805 |
|
140 |
+
| 0.0399 | 5.1634 | 1580 | 0.0741 | 0.9384 | 0.9585 | 0.9483 | 0.9812 |
|
141 |
+
| 0.035 | 5.2288 | 1600 | 0.0826 | 0.9234 | 0.9522 | 0.9376 | 0.9783 |
|
142 |
+
| 0.0295 | 5.2941 | 1620 | 0.0755 | 0.9376 | 0.9550 | 0.9462 | 0.9808 |
|
143 |
+
| 0.0299 | 5.3595 | 1640 | 0.0795 | 0.9353 | 0.9592 | 0.9471 | 0.9806 |
|
144 |
+
| 0.0343 | 5.4248 | 1660 | 0.0761 | 0.9380 | 0.9501 | 0.9440 | 0.9807 |
|
145 |
+
| 0.0379 | 5.4902 | 1680 | 0.0797 | 0.9322 | 0.9549 | 0.9434 | 0.9800 |
|
146 |
+
| 0.0348 | 5.5556 | 1700 | 0.0767 | 0.9391 | 0.9558 | 0.9474 | 0.9809 |
|
147 |
+
| 0.0367 | 5.6209 | 1720 | 0.0829 | 0.9257 | 0.9488 | 0.9371 | 0.9786 |
|
148 |
+
| 0.036 | 5.6863 | 1740 | 0.0782 | 0.9371 | 0.9534 | 0.9452 | 0.9800 |
|
149 |
+
| 0.0347 | 5.7516 | 1760 | 0.0833 | 0.9226 | 0.9459 | 0.9341 | 0.9782 |
|
150 |
+
| 0.0285 | 5.8170 | 1780 | 0.0772 | 0.9374 | 0.9537 | 0.9455 | 0.9806 |
|
151 |
+
| 0.037 | 5.8824 | 1800 | 0.0809 | 0.9317 | 0.9548 | 0.9431 | 0.9798 |
|
152 |
+
| 0.0308 | 5.9477 | 1820 | 0.0769 | 0.9383 | 0.9530 | 0.9455 | 0.9804 |
|
153 |
+
| 0.0341 | 6.0131 | 1840 | 0.0821 | 0.9309 | 0.9524 | 0.9415 | 0.9794 |
|
154 |
+
| 0.0312 | 6.0784 | 1860 | 0.0812 | 0.9330 | 0.9534 | 0.9431 | 0.9802 |
|
155 |
+
| 0.0266 | 6.1438 | 1880 | 0.0799 | 0.9311 | 0.9497 | 0.9403 | 0.9795 |
|
156 |
+
| 0.0242 | 6.2092 | 1900 | 0.0802 | 0.9286 | 0.9485 | 0.9385 | 0.9787 |
|
157 |
+
| 0.0342 | 6.2745 | 1920 | 0.0785 | 0.9372 | 0.9568 | 0.9469 | 0.9808 |
|
158 |
+
| 0.0293 | 6.3399 | 1940 | 0.0769 | 0.9379 | 0.9569 | 0.9473 | 0.9814 |
|
159 |
+
| 0.0245 | 6.4052 | 1960 | 0.0777 | 0.9372 | 0.9575 | 0.9473 | 0.9811 |
|
160 |
+
| 0.0275 | 6.4706 | 1980 | 0.0792 | 0.9348 | 0.9544 | 0.9445 | 0.9806 |
|
161 |
+
| 0.0264 | 6.5359 | 2000 | 0.0785 | 0.9395 | 0.9585 | 0.9489 | 0.9816 |
|
162 |
+
| 0.0319 | 6.6013 | 2020 | 0.0782 | 0.9404 | 0.9569 | 0.9486 | 0.9816 |
|
163 |
+
| 0.0264 | 6.6667 | 2040 | 0.0800 | 0.9372 | 0.9556 | 0.9463 | 0.9810 |
|
164 |
+
| 0.0273 | 6.7320 | 2060 | 0.0789 | 0.9389 | 0.9564 | 0.9476 | 0.9813 |
|
165 |
+
| 0.0366 | 6.7974 | 2080 | 0.0774 | 0.9416 | 0.9561 | 0.9488 | 0.9816 |
|
166 |
+
| 0.0246 | 6.8627 | 2100 | 0.0781 | 0.9400 | 0.9556 | 0.9477 | 0.9811 |
|
167 |
+
| 0.0243 | 6.9281 | 2120 | 0.0789 | 0.9384 | 0.9560 | 0.9471 | 0.9810 |
|
168 |
+
| 0.0258 | 6.9935 | 2140 | 0.0786 | 0.9389 | 0.9557 | 0.9472 | 0.9810 |
|
169 |
|
170 |
|
171 |
### Framework versions
|