update model card README.md
Browse files
README.md
CHANGED
@@ -1,33 +1,67 @@
|
|
1 |
---
|
2 |
-
language: en
|
3 |
-
tags:
|
4 |
-
- text-generation
|
5 |
license: apache-2.0
|
6 |
-
|
7 |
-
-
|
8 |
-
|
9 |
-
-
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
It can generate descriptions for your **home** products by getting a text prompt.
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
-
###
|
24 |
-
For best experience and clean outputs, you can use Live Demo mentioned above, also you can use the notebook mentioned in my [GitHub](https://github.com/HamidRezaAttar/GPT2-Home)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
>>> model = AutoModelForCausalLM.from_pretrained("bprateek/product_description_generator")
|
31 |
-
>>> generator = pipeline('text-generation', model, tokenizer=tokenizer, config={'max_length':100})
|
32 |
-
>>> generated_text = generator("This bed is very comfortable.")
|
33 |
-
```
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: product_description_generator
|
9 |
+
results: []
|
10 |
---
|
11 |
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# product_description_generator
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 4.0241
|
20 |
+
- Rouge1: 0.1639
|
21 |
+
- Rouge2: 0.0
|
22 |
+
- Rougel: 0.1337
|
23 |
+
- Rougelsum: 0.1357
|
24 |
+
- Gen Len: 11.4
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
|
40 |
+
### Training hyperparameters
|
|
|
41 |
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 2e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 16
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 4
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
|
52 |
+
### Training results
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
|
56 |
+
| No log | 1.0 | 6 | 4.2311 | 0.1365 | 0.0 | 0.1103 | 0.1102 | 12.1 |
|
57 |
+
| No log | 2.0 | 12 | 4.1437 | 0.1668 | 0.0 | 0.1321 | 0.1332 | 13.2 |
|
58 |
+
| No log | 3.0 | 18 | 4.0572 | 0.143 | 0.0 | 0.1152 | 0.1152 | 11.8 |
|
59 |
+
| No log | 4.0 | 24 | 4.0241 | 0.1639 | 0.0 | 0.1337 | 0.1357 | 11.4 |
|
60 |
|
61 |
|
62 |
+
### Framework versions
|
|
|
63 |
|
64 |
+
- Transformers 4.28.1
|
65 |
+
- Pytorch 2.0.0+cu118
|
66 |
+
- Datasets 2.12.0
|
67 |
+
- Tokenizers 0.13.3
|
|
|
|
|
|
|
|