update
Browse files- .gitignore +168 -0
- config.json +28 -0
- modeling/__init__.py +0 -37
- modeling/bert.py +0 -7
- modeling/cache_utils.py +0 -58
- modeling/config.py +106 -0
- modeling/da_utils.py +0 -1
- modeling/deberta.py +0 -4
- modeling/disentangled_attention.py +0 -3
- modeling/flash.py +0 -794
- modeling/focal_loss.py +0 -200
- modeling/gat.py +0 -665
- modeling/mlm.py +0 -38
- modeling/modeling.py +0 -0
- modeling/nnmodule.py +0 -184
- modeling/ops.py +2 -4
- modeling/pretrained_models.py +0 -2
- modeling/wywlm_modeling.py +0 -446
.gitignore
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Initially taken from Github's Python gitignore file
|
2 |
+
|
3 |
+
# Byte-compiled / optimized / DLL files
|
4 |
+
__pycache__/
|
5 |
+
*.py[cod]
|
6 |
+
*$py.class
|
7 |
+
|
8 |
+
# C extensions
|
9 |
+
*.so
|
10 |
+
|
11 |
+
# tests and logs
|
12 |
+
tests/fixtures/cached_*_text.txt
|
13 |
+
logs/
|
14 |
+
lightning_logs/
|
15 |
+
lang_code_data/
|
16 |
+
nohup.out
|
17 |
+
output/
|
18 |
+
|
19 |
+
# Distribution / packaging
|
20 |
+
.Python
|
21 |
+
build/
|
22 |
+
develop-eggs/
|
23 |
+
dist/
|
24 |
+
downloads/
|
25 |
+
eggs/
|
26 |
+
.eggs/
|
27 |
+
lib/
|
28 |
+
lib64/
|
29 |
+
parts/
|
30 |
+
sdist/
|
31 |
+
var/
|
32 |
+
wheels/
|
33 |
+
*.egg-info/
|
34 |
+
.installed.cfg
|
35 |
+
*.egg
|
36 |
+
MANIFEST
|
37 |
+
|
38 |
+
# PyInstaller
|
39 |
+
# Usually these files are written by a python script from a template
|
40 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
41 |
+
*.manifest
|
42 |
+
*.spec
|
43 |
+
|
44 |
+
# Installer logs
|
45 |
+
pip-log.txt
|
46 |
+
pip-delete-this-directory.txt
|
47 |
+
|
48 |
+
# Unit test / coverage reports
|
49 |
+
htmlcov/
|
50 |
+
.tox/
|
51 |
+
.nox/
|
52 |
+
.coverage
|
53 |
+
.coverage.*
|
54 |
+
.cache
|
55 |
+
nosetests.xml
|
56 |
+
coverage.xml
|
57 |
+
*.cover
|
58 |
+
.hypothesis/
|
59 |
+
.pytest_cache/
|
60 |
+
|
61 |
+
# Translations
|
62 |
+
*.mo
|
63 |
+
*.pot
|
64 |
+
|
65 |
+
# Django stuff:
|
66 |
+
*.log
|
67 |
+
local_settings.py
|
68 |
+
db.sqlite3
|
69 |
+
|
70 |
+
# Flask stuff:
|
71 |
+
instance/
|
72 |
+
.webassets-cache
|
73 |
+
|
74 |
+
# Scrapy stuff:
|
75 |
+
.scrapy
|
76 |
+
|
77 |
+
# Sphinx documentation
|
78 |
+
docs/_build/
|
79 |
+
|
80 |
+
# PyBuilder
|
81 |
+
target/
|
82 |
+
|
83 |
+
# Jupyter Notebook
|
84 |
+
.ipynb_checkpoints
|
85 |
+
|
86 |
+
# IPython
|
87 |
+
profile_default/
|
88 |
+
ipython_config.py
|
89 |
+
|
90 |
+
# pyenv
|
91 |
+
.python-version
|
92 |
+
|
93 |
+
# celery beat schedule file
|
94 |
+
celerybeat-schedule
|
95 |
+
|
96 |
+
# SageMath parsed files
|
97 |
+
*.sage.py
|
98 |
+
|
99 |
+
# Environments
|
100 |
+
.env
|
101 |
+
.venv
|
102 |
+
env/
|
103 |
+
venv/
|
104 |
+
ENV/
|
105 |
+
env.bak/
|
106 |
+
venv.bak/
|
107 |
+
|
108 |
+
# Spyder project settings
|
109 |
+
.spyderproject
|
110 |
+
.spyproject
|
111 |
+
|
112 |
+
# Rope project settings
|
113 |
+
.ropeproject
|
114 |
+
|
115 |
+
# mkdocs documentation
|
116 |
+
/site
|
117 |
+
|
118 |
+
# mypy
|
119 |
+
.mypy_cache/
|
120 |
+
.dmypy.json
|
121 |
+
dmypy.json
|
122 |
+
|
123 |
+
# Pyre type checker
|
124 |
+
.pyre/
|
125 |
+
|
126 |
+
# vscode
|
127 |
+
.vs
|
128 |
+
.vscode
|
129 |
+
|
130 |
+
# Pycharm
|
131 |
+
.idea
|
132 |
+
|
133 |
+
# TF code
|
134 |
+
tensorflow_code
|
135 |
+
|
136 |
+
# Models
|
137 |
+
proc_data
|
138 |
+
|
139 |
+
# examples
|
140 |
+
runs
|
141 |
+
/runs_old
|
142 |
+
/wandb
|
143 |
+
/examples/runs
|
144 |
+
/examples/**/*.args
|
145 |
+
/examples/rag/sweep
|
146 |
+
/inv
|
147 |
+
|
148 |
+
# data
|
149 |
+
/data
|
150 |
+
serialization_dir
|
151 |
+
|
152 |
+
# emacs
|
153 |
+
*.*~
|
154 |
+
debug.env
|
155 |
+
|
156 |
+
# vim
|
157 |
+
.*.swp
|
158 |
+
|
159 |
+
#ctags
|
160 |
+
tags
|
161 |
+
|
162 |
+
# pre-commit
|
163 |
+
.pre-commit*
|
164 |
+
|
165 |
+
# .lock
|
166 |
+
*.lock
|
167 |
+
|
168 |
+
inv.py
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bozhou/DeBERTa-base",
|
3 |
+
"architectures": [
|
4 |
+
"DeBERTa"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "modeling.config.ModelConfig",
|
8 |
+
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
9 |
+
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
|
10 |
+
},
|
11 |
+
"bos_token_id": 130004,
|
12 |
+
"eos_token_id": 130005,
|
13 |
+
"mask_token_id": 130000,
|
14 |
+
"gmask_token_id": 130001,
|
15 |
+
"pad_token_id": 3,
|
16 |
+
"hidden_size": 4096,
|
17 |
+
"inner_hidden_size": 16384,
|
18 |
+
"layernorm_epsilon": 1e-05,
|
19 |
+
"max_sequence_length": 2048,
|
20 |
+
"model_type": "chatglm",
|
21 |
+
"num_attention_heads": 32,
|
22 |
+
"num_layers": 28,
|
23 |
+
"position_encoding_2d": true,
|
24 |
+
"torch_dtype": "float16",
|
25 |
+
"transformers_version": "4.23.1",
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 130528
|
28 |
+
}
|
modeling/__init__.py
CHANGED
@@ -1,37 +0,0 @@
|
|
1 |
-
#
|
2 |
-
# Zhou Bo
|
3 |
-
|
4 |
-
#
|
5 |
-
|
6 |
-
""" Components for NN
|
7 |
-
"""
|
8 |
-
|
9 |
-
from __future__ import absolute_import
|
10 |
-
from __future__ import division
|
11 |
-
from __future__ import print_function
|
12 |
-
|
13 |
-
from .tokenizers import *
|
14 |
-
from .pooling import *
|
15 |
-
from .mlm import MLMPredictionHead
|
16 |
-
from .nnmodule import NNModule
|
17 |
-
from .deberta import *
|
18 |
-
from .disentangled_attention import *
|
19 |
-
from .ops import *
|
20 |
-
from .bert import *
|
21 |
-
from .config import *
|
22 |
-
from .cache_utils import *
|
23 |
-
from .focal_loss import *
|
24 |
-
# from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer
|
25 |
-
from .modeling import (BertConfig, BertModel, BertForPreTraining, BertForMaskedLM,
|
26 |
-
BertForNextSentencePrediction, PreTrainedBertModel,
|
27 |
-
BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification,
|
28 |
-
BertForQuestionAnswering, BertForPreTrainingLossMask, BertPreTrainingPairRel,
|
29 |
-
BertPreTrainingPairTransform, BertPreTrainingHeads, MLMHead)
|
30 |
-
# from .optimization import BertAdam, BertAdamFineTune
|
31 |
-
try:
|
32 |
-
from .optimization_fp16 import FP16_Optimizer_State
|
33 |
-
except:
|
34 |
-
pass
|
35 |
-
from .file_utils import PYTORCH_PRETRAINED_BERT_CACHE
|
36 |
-
from .flash import FlashQuadModel
|
37 |
-
from .gat import GatModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling/bert.py
CHANGED
@@ -6,17 +6,10 @@
|
|
6 |
|
7 |
# This piece of code is modified based on https://github.com/huggingface/transformers
|
8 |
|
9 |
-
import copy
|
10 |
import torch
|
11 |
from torch import nn
|
12 |
from collections import Sequence
|
13 |
from packaging import version
|
14 |
-
import numpy as np
|
15 |
-
import math
|
16 |
-
import os
|
17 |
-
import pdb
|
18 |
-
|
19 |
-
import json
|
20 |
from .ops import *
|
21 |
from .disentangled_attention import *
|
22 |
from .da_utils import *
|
|
|
6 |
|
7 |
# This piece of code is modified based on https://github.com/huggingface/transformers
|
8 |
|
|
|
9 |
import torch
|
10 |
from torch import nn
|
11 |
from collections import Sequence
|
12 |
from packaging import version
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
from .ops import *
|
14 |
from .disentangled_attention import *
|
15 |
from .da_utils import *
|
modeling/cache_utils.py
CHANGED
@@ -13,10 +13,7 @@ import os
|
|
13 |
import requests
|
14 |
from .config import ModelConfig
|
15 |
import pathlib
|
16 |
-
from ..utils import xtqdm as tqdm
|
17 |
-
from zipfile import ZipFile
|
18 |
import loguru
|
19 |
-
# from ..utils import get_logger
|
20 |
logger = loguru.logger
|
21 |
|
22 |
__all__ = ['pretrained_models', 'load_model_state', 'load_vocab']
|
@@ -49,36 +46,7 @@ pretrained_models= {
|
|
49 |
'deberta-v3-xsmall': PretrainedModel('deberta-v3-xsmall', 'spm.model', 'spm'),
|
50 |
}
|
51 |
|
52 |
-
def download_asset(url, name, tag=None, no_cache=False, cache_dir=None):
|
53 |
-
_tag = tag
|
54 |
-
if _tag is None:
|
55 |
-
_tag = 'latest'
|
56 |
-
if not cache_dir:
|
57 |
-
cache_dir = os.path.join(pathlib.Path.home(), f'.~DeBERTa/assets/{_tag}/')
|
58 |
-
os.makedirs(cache_dir, exist_ok=True)
|
59 |
-
output=os.path.join(cache_dir, name)
|
60 |
-
if os.path.exists(output) and (not no_cache):
|
61 |
-
return output
|
62 |
|
63 |
-
#repo=f'https://huggingface.co/microsoft/deberta-{name}/blob/main/bpe_encoder.bin'
|
64 |
-
headers = {}
|
65 |
-
headers['Accept'] = 'application/octet-stream'
|
66 |
-
resp = requests.get(url, stream=True, headers=headers)
|
67 |
-
if resp.status_code != 200:
|
68 |
-
raise Exception(f'Request for {url} return {resp.status_code}, {resp.text}')
|
69 |
-
|
70 |
-
try:
|
71 |
-
with open(output, 'wb') as fs:
|
72 |
-
progress = tqdm(total=int(resp.headers['Content-Length']) if 'Content-Length' in resp.headers else -1, ncols=80, desc=f'Downloading {name}')
|
73 |
-
for c in resp.iter_content(chunk_size=1024*1024):
|
74 |
-
fs.write(c)
|
75 |
-
progress.update(len(c))
|
76 |
-
progress.close()
|
77 |
-
except:
|
78 |
-
os.remove(output)
|
79 |
-
raise
|
80 |
-
|
81 |
-
return output
|
82 |
|
83 |
def load_model_state(path_or_pretrained_id, tag=None, no_cache=False, cache_dir=None):
|
84 |
model_path = path_or_pretrained_id
|
@@ -91,9 +59,6 @@ def load_model_state(path_or_pretrained_id, tag=None, no_cache=False, cache_dir=
|
|
91 |
cache_dir = os.path.join(pathlib.Path.home(), f'.~DeBERTa/assets/{_tag}/{pretrained.name}')
|
92 |
os.makedirs(cache_dir, exist_ok=True)
|
93 |
model_path = os.path.join(cache_dir, 'pytorch_model.bin')
|
94 |
-
if (not os.path.exists(model_path)) or no_cache:
|
95 |
-
asset = download_asset(pretrained.model_url, 'pytorch_model.bin', tag=tag, no_cache=no_cache, cache_dir=cache_dir)
|
96 |
-
asset = download_asset(pretrained.config_url, 'model_config.json', tag=tag, no_cache=no_cache, cache_dir=cache_dir)
|
97 |
elif not model_path:
|
98 |
return None,None
|
99 |
|
@@ -107,26 +72,3 @@ def load_model_state(path_or_pretrained_id, tag=None, no_cache=False, cache_dir=
|
|
107 |
else:
|
108 |
model_config = None
|
109 |
return model_state, model_config
|
110 |
-
|
111 |
-
def load_vocab(vocab_path=None, vocab_type=None, pretrained_id=None, tag=None, no_cache=False, cache_dir=None):
|
112 |
-
if pretrained_id and (pretrained_id.lower() in pretrained_models):
|
113 |
-
_tag = tag
|
114 |
-
if _tag is None:
|
115 |
-
_tag = 'latest'
|
116 |
-
|
117 |
-
pretrained = pretrained_models[pretrained_id.lower()]
|
118 |
-
if not cache_dir:
|
119 |
-
cache_dir = os.path.join(pathlib.Path.home(), f'.~DeBERTa/assets/{_tag}/{pretrained.name}')
|
120 |
-
os.makedirs(cache_dir, exist_ok=True)
|
121 |
-
vocab_type = pretrained.vocab_type
|
122 |
-
url = pretrained.vocab_url
|
123 |
-
outname = os.path.basename(url)
|
124 |
-
vocab_path =os.path.join(cache_dir, outname)
|
125 |
-
if (not os.path.exists(vocab_path)) or no_cache:
|
126 |
-
asset = download_asset(url, outname, tag=tag, no_cache=no_cache, cache_dir=cache_dir)
|
127 |
-
if vocab_type is None:
|
128 |
-
vocab_type = 'spm'
|
129 |
-
return vocab_path, vocab_type
|
130 |
-
|
131 |
-
def test_download():
|
132 |
-
vocab = load_vocab()
|
|
|
13 |
import requests
|
14 |
from .config import ModelConfig
|
15 |
import pathlib
|
|
|
|
|
16 |
import loguru
|
|
|
17 |
logger = loguru.logger
|
18 |
|
19 |
__all__ = ['pretrained_models', 'load_model_state', 'load_vocab']
|
|
|
46 |
'deberta-v3-xsmall': PretrainedModel('deberta-v3-xsmall', 'spm.model', 'spm'),
|
47 |
}
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def load_model_state(path_or_pretrained_id, tag=None, no_cache=False, cache_dir=None):
|
52 |
model_path = path_or_pretrained_id
|
|
|
59 |
cache_dir = os.path.join(pathlib.Path.home(), f'.~DeBERTa/assets/{_tag}/{pretrained.name}')
|
60 |
os.makedirs(cache_dir, exist_ok=True)
|
61 |
model_path = os.path.join(cache_dir, 'pytorch_model.bin')
|
|
|
|
|
|
|
62 |
elif not model_path:
|
63 |
return None,None
|
64 |
|
|
|
72 |
else:
|
73 |
model_config = None
|
74 |
return model_state, model_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling/config.py
CHANGED
@@ -1,8 +1,114 @@
|
|
1 |
import json
|
2 |
import copy
|
3 |
|
|
|
|
|
4 |
__all__=['AbsModelConfig', 'ModelConfig']
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
class AbsModelConfig(object):
|
7 |
def __init__(self):
|
8 |
pass
|
|
|
1 |
import json
|
2 |
import copy
|
3 |
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
|
6 |
__all__=['AbsModelConfig', 'ModelConfig']
|
7 |
|
8 |
+
|
9 |
+
class DebertaConfig(PretrainedConfig):
|
10 |
+
model_type = 'deberta-v2'
|
11 |
+
|
12 |
+
def __init__(self,
|
13 |
+
vocab_size_or_config_json_file,
|
14 |
+
hidden_size=768,
|
15 |
+
num_hidden_layers=12,
|
16 |
+
num_attention_heads=12,
|
17 |
+
intermediate_size=3072,
|
18 |
+
hidden_act="gelu",
|
19 |
+
hidden_dropout_prob=0.1,
|
20 |
+
attention_probs_dropout_prob=0.1,
|
21 |
+
max_position_embeddings=512,
|
22 |
+
type_vocab_size=2,
|
23 |
+
relax_projection=0,
|
24 |
+
new_pos_ids=False,
|
25 |
+
initializer_range=0.02,
|
26 |
+
task_idx=None,
|
27 |
+
fp32_embedding=False,
|
28 |
+
ffn_type=0,
|
29 |
+
label_smoothing=None,
|
30 |
+
num_qkv=0,
|
31 |
+
seg_emb=False):
|
32 |
+
"""Constructs BertConfig.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
|
36 |
+
hidden_size: Size of the encoder layers and the pooler layer.
|
37 |
+
num_hidden_layers: Number of hidden layers in the Transformer encoder.
|
38 |
+
num_attention_heads: Number of attention heads for each attention layer in
|
39 |
+
the Transformer encoder.
|
40 |
+
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
|
41 |
+
layer in the Transformer encoder.
|
42 |
+
hidden_act: The non-linear activation function (function or string) in the
|
43 |
+
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
|
44 |
+
hidden_dropout_prob: The dropout probabilitiy for all fully connected
|
45 |
+
layers in the embeddings, encoder, and pooler.
|
46 |
+
attention_probs_dropout_prob: The dropout ratio for the attention
|
47 |
+
probabilities.
|
48 |
+
max_position_embeddings: The maximum sequence length that this model might
|
49 |
+
ever be used with. Typically set this to something large just in case
|
50 |
+
(e.g., 512 or 1024 or 2048).
|
51 |
+
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
|
52 |
+
`BertModel`.
|
53 |
+
initializer_range: The sttdev of the truncated_normal_initializer for
|
54 |
+
initializing all weight matrices.
|
55 |
+
"""
|
56 |
+
if isinstance(vocab_size_or_config_json_file, str):
|
57 |
+
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
|
58 |
+
json_config = json.loads(reader.read())
|
59 |
+
for key, value in json_config.items():
|
60 |
+
self.__dict__[key] = value
|
61 |
+
elif isinstance(vocab_size_or_config_json_file, int):
|
62 |
+
self.vocab_size = vocab_size_or_config_json_file
|
63 |
+
self.hidden_size = hidden_size
|
64 |
+
self.num_hidden_layers = num_hidden_layers
|
65 |
+
self.num_attention_heads = num_attention_heads
|
66 |
+
self.hidden_act = hidden_act
|
67 |
+
self.intermediate_size = intermediate_size
|
68 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
69 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
70 |
+
self.max_position_embeddings = max_position_embeddings
|
71 |
+
self.type_vocab_size = type_vocab_size
|
72 |
+
self.relax_projection = relax_projection
|
73 |
+
self.new_pos_ids = new_pos_ids
|
74 |
+
self.initializer_range = initializer_range
|
75 |
+
self.task_idx = task_idx
|
76 |
+
self.fp32_embedding = fp32_embedding
|
77 |
+
self.ffn_type = ffn_type
|
78 |
+
self.label_smoothing = label_smoothing
|
79 |
+
self.num_qkv = num_qkv
|
80 |
+
self.seg_emb = seg_emb
|
81 |
+
else:
|
82 |
+
raise ValueError("First argument must be either a vocabulary size (int)"
|
83 |
+
"or the path to a pretrained model config file (str)")
|
84 |
+
|
85 |
+
# @classmethod
|
86 |
+
# def from_dict(cls, json_object):
|
87 |
+
# """Constructs a `BertConfig` from a Python dictionary of parameters."""
|
88 |
+
# config = DebertaConfig(vocab_size_or_config_json_file=-1)
|
89 |
+
# for key, value in json_object.items():
|
90 |
+
# config.__dict__[key] = value
|
91 |
+
# return config
|
92 |
+
|
93 |
+
# @classmethod
|
94 |
+
# def from_json_file(cls, json_file):
|
95 |
+
# """Constructs a `BertConfig` from a json file of parameters."""
|
96 |
+
# with open(json_file, "r", encoding='utf-8') as reader:
|
97 |
+
# text = reader.read()
|
98 |
+
# return cls.from_dict(json.loads(text))
|
99 |
+
|
100 |
+
# def __repr__(self):
|
101 |
+
# return str(self.to_json_string())
|
102 |
+
|
103 |
+
# def to_dict(self):
|
104 |
+
# """Serializes this instance to a Python dictionary."""
|
105 |
+
# output = copy.deepcopy(self.__dict__)
|
106 |
+
# return output
|
107 |
+
|
108 |
+
# def to_json_string(self):
|
109 |
+
# """Serializes this instance to a JSON string."""
|
110 |
+
# return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
111 |
+
|
112 |
class AbsModelConfig(object):
|
113 |
def __init__(self):
|
114 |
pass
|
modeling/da_utils.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import torch
|
2 |
-
import pdb
|
3 |
from functools import lru_cache
|
4 |
import numpy as np
|
5 |
|
|
|
1 |
import torch
|
|
|
2 |
from functools import lru_cache
|
3 |
import numpy as np
|
4 |
|
modeling/deberta.py
CHANGED
@@ -9,14 +9,10 @@
|
|
9 |
|
10 |
import copy
|
11 |
import torch
|
12 |
-
import os
|
13 |
-
|
14 |
-
import json
|
15 |
from .ops import *
|
16 |
from .bert import *
|
17 |
from .config import ModelConfig
|
18 |
from .cache_utils import load_model_state
|
19 |
-
import pdb
|
20 |
|
21 |
__all__ = ['DeBERTa']
|
22 |
|
|
|
9 |
|
10 |
import copy
|
11 |
import torch
|
|
|
|
|
|
|
12 |
from .ops import *
|
13 |
from .bert import *
|
14 |
from .config import ModelConfig
|
15 |
from .cache_utils import load_model_state
|
|
|
16 |
|
17 |
__all__ = ['DeBERTa']
|
18 |
|
modeling/disentangled_attention.py
CHANGED
@@ -11,12 +11,9 @@
|
|
11 |
Disentangled SelfAttention module
|
12 |
"""
|
13 |
|
14 |
-
import numpy as np
|
15 |
import math
|
16 |
import torch
|
17 |
from torch import nn
|
18 |
-
import functools
|
19 |
-
import pdb
|
20 |
|
21 |
from .ops import *
|
22 |
from .da_utils import build_relative_position
|
|
|
11 |
Disentangled SelfAttention module
|
12 |
"""
|
13 |
|
|
|
14 |
import math
|
15 |
import torch
|
16 |
from torch import nn
|
|
|
|
|
17 |
|
18 |
from .ops import *
|
19 |
from .da_utils import build_relative_position
|
modeling/flash.py
DELETED
@@ -1,794 +0,0 @@
|
|
1 |
-
#
|
2 |
-
# Zhoubo
|
3 |
-
#
|
4 |
-
"""
|
5 |
-
FLASH: https://arxiv.org/abs/2202.10447
|
6 |
-
"""
|
7 |
-
import copy
|
8 |
-
import torch
|
9 |
-
import os
|
10 |
-
from collections import Sequence
|
11 |
-
import json
|
12 |
-
|
13 |
-
import torch
|
14 |
-
import torch.nn as nn
|
15 |
-
import torch.nn.functional as F
|
16 |
-
from transformers.activations import ACT2FN
|
17 |
-
from .modeling import *
|
18 |
-
from .ops import XSoftmax, sequence_masking
|
19 |
-
|
20 |
-
from .bert import *
|
21 |
-
from .config import ModelConfig
|
22 |
-
from .cache_utils import load_model_state
|
23 |
-
import einops
|
24 |
-
|
25 |
-
|
26 |
-
class ScaleNorm(nn.Module):
|
27 |
-
def __init__(self, eps=1e-5):
|
28 |
-
super().__init__()
|
29 |
-
self.eps = eps
|
30 |
-
self.scala = nn.Parameter(torch.ones(1))
|
31 |
-
|
32 |
-
def forward(self, x):
|
33 |
-
mean_square = (x ** 2).mean(dim=-1, keepdim=True)
|
34 |
-
x = x * torch.rsqrt(mean_square + self.eps) * self.scala
|
35 |
-
return x
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
class OffsetScale(nn.Module):
|
40 |
-
def __init__(self, dim, heads = 1):
|
41 |
-
super().__init__()
|
42 |
-
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
43 |
-
self.beta = nn.Parameter(torch.zeros(heads, dim))
|
44 |
-
# nn.init.normal_(self.gamma, std = 0.02)
|
45 |
-
# nn.init.xavier_uniform_(self.gamma)
|
46 |
-
|
47 |
-
def forward(self, x):
|
48 |
-
out = (x * self.gamma) + self.beta
|
49 |
-
return out
|
50 |
-
|
51 |
-
|
52 |
-
class ScaledSinuEmbedding(nn.Module):
|
53 |
-
def __init__(self, dim):
|
54 |
-
super().__init__()
|
55 |
-
self.scale = nn.Parameter(torch.ones(1,))
|
56 |
-
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
57 |
-
self.register_buffer('inv_freq', inv_freq)
|
58 |
-
|
59 |
-
def forward(self, x):
|
60 |
-
n, device = x.shape[1], x.device
|
61 |
-
t = torch.arange(n, device = device).type_as(self.inv_freq)
|
62 |
-
sinu = torch.einsum('i , j -> i j', t, self.inv_freq)
|
63 |
-
emb = torch.cat((sinu.sin(), sinu.cos()), dim = -1)
|
64 |
-
return emb * self.scale
|
65 |
-
|
66 |
-
|
67 |
-
def RoPE(x, dim):
|
68 |
-
"""
|
69 |
-
:param x: input tensor
|
70 |
-
:param dim: oprate dimension
|
71 |
-
:return: tensor
|
72 |
-
"""
|
73 |
-
shape = x.shape
|
74 |
-
if isinstance(dim, int):
|
75 |
-
dim = [dim]
|
76 |
-
|
77 |
-
spatial_shape = [shape[i] for i in dim]
|
78 |
-
total_len = 1
|
79 |
-
for i in spatial_shape:
|
80 |
-
total_len *= i
|
81 |
-
position = torch.reshape(torch.arange(total_len, dtype=torch.float, device=x.device), spatial_shape)
|
82 |
-
|
83 |
-
for i in range(dim[-1] + 1, len(shape) - 1, 1):
|
84 |
-
position = torch.unsqueeze(position, dim=-1)
|
85 |
-
|
86 |
-
half_size = shape[-1] // 2
|
87 |
-
freq_seq = -torch.arange(half_size, dtype=torch.float, device=x.device) / float(half_size)
|
88 |
-
inv_freq = 10000 ** -freq_seq
|
89 |
-
sinusoid = torch.einsum("...,d->...d", position, inv_freq)
|
90 |
-
sin = torch.sin(sinusoid).repeat_interleave(2, -1)
|
91 |
-
cos = torch.cos(sinusoid).repeat_interleave(2, -1)
|
92 |
-
tensor_cross = torch.stack([-x[..., 1:: 2], x[..., :: 2]], -1).reshape(x.shape)
|
93 |
-
# x1, x2 = torch.chunk(x, 2, dim=-1)
|
94 |
-
# return torch.cat([x1 * cos - x2 * sin, x2 * cos + x1 * sin], dim=-1)
|
95 |
-
return x * cos + tensor_cross * sin
|
96 |
-
|
97 |
-
|
98 |
-
def rel_pos_bias(seq_len, s):
|
99 |
-
a = torch.rand([1, s], dtype=torch.float)
|
100 |
-
b = torch.rand([1, s], dtype=torch.float)
|
101 |
-
w = torch.rand([2 * seq_len - 1], dtype=torch.float)
|
102 |
-
if seq_len <= 512:
|
103 |
-
t = F.pad(w[: 2 * seq_len - 1], [0, seq_len]).repeat(seq_len)
|
104 |
-
t = t[..., :-seq_len].reshape(-1, seq_len, 3 * seq_len - 2)
|
105 |
-
r = (2 * seq_len - 1) // 2
|
106 |
-
t = t[..., r:-r]
|
107 |
-
else:
|
108 |
-
a = RoPE(a.repeat(seq_len, 1), dim=[0])
|
109 |
-
b = RoPE(b.repeat(seq_len, 1), dim=[0])
|
110 |
-
t = torch.einsum("mk,nk->mn", a, b)
|
111 |
-
return t
|
112 |
-
|
113 |
-
def squared_relu(x, attention_mask, dim=-1):
|
114 |
-
rmask = ~(attention_mask.bool())
|
115 |
-
x = x.masked_fill(rmask, 0)
|
116 |
-
return torch.square(F.relu(x))
|
117 |
-
|
118 |
-
|
119 |
-
def attention_normalize(a, axis=-1, mask=None, fn='softmax'):
|
120 |
-
if fn == 'softmax':
|
121 |
-
return XSoftmax.apply(a, mask, axis)
|
122 |
-
else:
|
123 |
-
mask_ = a > -float('inf') / 10
|
124 |
-
# mask_ = mask_.byte()
|
125 |
-
mask_ = torch.sum(mask_, axis=axis, keepdim=True)
|
126 |
-
l = torch.maximum(mask_, torch.ones_like(mask_))
|
127 |
-
if fn == 'squared_relu':
|
128 |
-
rmask = ~(mask.bool())
|
129 |
-
a = a.masked_fill(rmask, 0)
|
130 |
-
return torch.square(F.relu(a)) / l
|
131 |
-
elif fn == 'softmax_plus':
|
132 |
-
return XSoftmax.apply(a * torch.log(l) / np.log(512), mask, axis)
|
133 |
-
return a
|
134 |
-
|
135 |
-
|
136 |
-
class GAULinear(nn.Linear):
|
137 |
-
def init_weight(self):
|
138 |
-
nn.init.xavier_uniform_(self.weight)
|
139 |
-
|
140 |
-
|
141 |
-
class GatedAttentionUnit(nn.Module):
|
142 |
-
"""
|
143 |
-
GAU Block: Gate Attention Unit
|
144 |
-
"""
|
145 |
-
def __init__(
|
146 |
-
self,
|
147 |
-
max_seq_length,
|
148 |
-
hidden_size,
|
149 |
-
attention_key_size=128,
|
150 |
-
activation='swish',
|
151 |
-
use_bias=True,
|
152 |
-
attention_norm_type='squared_relu',
|
153 |
-
attention_scale=True,
|
154 |
-
dropout=0.1,
|
155 |
-
pre_norm=False,
|
156 |
-
norm_type="layer_norm",
|
157 |
-
eps=1e-5,
|
158 |
-
shift_token=False,
|
159 |
-
use_rel_bias=False,
|
160 |
-
add_residual=True,
|
161 |
-
**kwargs,):
|
162 |
-
|
163 |
-
super(GatedAttentionUnit, self).__init__(**kwargs)
|
164 |
-
self.max_seq_length = max_seq_length
|
165 |
-
self.units = hidden_size
|
166 |
-
self.intermediate_size = self.units * 2
|
167 |
-
self.key_size = attention_key_size
|
168 |
-
self.activation = activation
|
169 |
-
self.use_bias = use_bias
|
170 |
-
self.attention_norm_type = attention_norm_type
|
171 |
-
self.attention_scale = attention_scale
|
172 |
-
self.dropout = StableDropout(dropout)
|
173 |
-
self.i_dense = nn.Sequential(
|
174 |
-
nn.Linear(self.units, 2 * self.intermediate_size + self.key_size, bias=self.use_bias),
|
175 |
-
nn.SiLU()
|
176 |
-
)
|
177 |
-
self.o_dense = nn.Sequential(
|
178 |
-
nn.Linear(self.intermediate_size, self.units, bias=self.use_bias),
|
179 |
-
self.dropout)
|
180 |
-
self.q_scaleoffset = OffsetScale(self.key_size)
|
181 |
-
self.k_scaleoffset = OffsetScale(self.key_size)
|
182 |
-
self.pre_norm = pre_norm
|
183 |
-
self.norm = (nn.LayerNorm(hidden_size, eps=eps) if norm_type.lower() == "layer_norm" else ScaleNorm(eps=eps))
|
184 |
-
self.add_residual = add_residual
|
185 |
-
|
186 |
-
def forward(self, x, attention_mask=None, **kwargs):
|
187 |
-
shortcut = x
|
188 |
-
|
189 |
-
if self.pre_norm:
|
190 |
-
x = self.norm(x)
|
191 |
-
|
192 |
-
x = self.i_dense(x)
|
193 |
-
u, v, qk = torch.split(x, [self.intermediate_size, self.intermediate_size, self.key_size], dim=-1)
|
194 |
-
q, k = self.q_scaleoffset(qk), self.k_scaleoffset(qk)
|
195 |
-
qk = RoPE(torch.stack([q, k], 2), dim=1)
|
196 |
-
q, k = qk[:, :, 0], qk[:, :, 1]
|
197 |
-
a = torch.einsum('bmd,bnd->bmn', q, k)
|
198 |
-
if self.attention_scale:
|
199 |
-
a = a / self.key_size**0.5
|
200 |
-
a = sequence_masking(a, attention_mask, '-inf', -1)
|
201 |
-
A = attention_normalize(a, -1, fn=self.attention_norm_type)
|
202 |
-
if self.dropout:
|
203 |
-
A = self.dropout(A)
|
204 |
-
out = self.o_dense(u * torch.einsum('bmn,bnd->bmd', A, v))
|
205 |
-
|
206 |
-
if self.add_residual:
|
207 |
-
out = out + shortcut
|
208 |
-
if not self.pre_norm:
|
209 |
-
out = self.norm(out)
|
210 |
-
return out
|
211 |
-
# # 加入RoPE
|
212 |
-
# if p_bias == 'rotary':
|
213 |
-
# qk = K.stack([q, k], 2)
|
214 |
-
# qk = apply_rotary_position_embeddings(inputs[n], qk)[0]
|
215 |
-
# q, k = qk[:, :, 0], qk[:, :, 1]
|
216 |
-
# # Attention
|
217 |
-
# a = tf.einsum('bmd,bnd->bmn', q, k)
|
218 |
-
# if self.attention_scale:
|
219 |
-
# a = a / self.key_size**0.5
|
220 |
-
# if a_bias is not None:
|
221 |
-
# a = a + a_bias
|
222 |
-
# a = sequence_masking(a, mask, '-inf', -1)
|
223 |
-
# A = attention_normalize(a, -1, self.normalization)
|
224 |
-
# if self.attention_dropout:
|
225 |
-
# A = Dropout(self.attention_dropout)(A)
|
226 |
-
# # 计算输出
|
227 |
-
# o = self.o_dense(u * tf.einsum('bmn,bnd->bmd', A, v))
|
228 |
-
|
229 |
-
# return o
|
230 |
-
|
231 |
-
class GAU(nn.Module):
|
232 |
-
def __init__(self, max_seq_length, hidden_size, expansion_factor=2, s=128, norm_type="layer_norm", eps=1e-5,
|
233 |
-
hidden_act="silu", shift_token=False, use_rel_bias=False, attention_norm_type='softmax',
|
234 |
-
pre_norm=False, dropout=0, add_residual = True):
|
235 |
-
super(GAU, self).__init__()
|
236 |
-
self.max_seq_length = max_seq_length
|
237 |
-
self.shift_token = shift_token
|
238 |
-
hidden_dim = int(expansion_factor * hidden_size)
|
239 |
-
self.norm = (nn.LayerNorm(hidden_size, eps=eps) if norm_type == "layer_norm" else ScaleNorm(eps=eps))
|
240 |
-
self.use_rel_bias = use_rel_bias
|
241 |
-
self.attention_norm_type = attention_norm_type
|
242 |
-
# if attention_norm_type == 'relu':
|
243 |
-
# self.attention_norm_func = squared_relu
|
244 |
-
# else:
|
245 |
-
# self.attention_norm_func = XSoftmax.apply
|
246 |
-
# self.norm = norm_klass(hidden_size)
|
247 |
-
|
248 |
-
self.dropout = nn.Dropout(dropout)
|
249 |
-
|
250 |
-
self.to_hidden = nn.Sequential(
|
251 |
-
nn.Linear(hidden_size, hidden_dim * 2),
|
252 |
-
nn.SiLU()
|
253 |
-
)
|
254 |
-
|
255 |
-
self.to_qk = nn.Sequential(
|
256 |
-
nn.Linear(hidden_size, s),
|
257 |
-
nn.SiLU()
|
258 |
-
)
|
259 |
-
|
260 |
-
self.offsetscale = OffsetScale(s, heads = 2)
|
261 |
-
|
262 |
-
self.to_out = nn.Sequential(
|
263 |
-
nn.Linear(hidden_dim, hidden_size),
|
264 |
-
nn.Dropout(dropout)
|
265 |
-
)
|
266 |
-
|
267 |
-
self.add_residual = add_residual
|
268 |
-
self.act_fn = ACT2FN[hidden_act]
|
269 |
-
self.pre_norm = pre_norm
|
270 |
-
|
271 |
-
|
272 |
-
def forward(
|
273 |
-
self,
|
274 |
-
x,
|
275 |
-
relative_pos = None,
|
276 |
-
attention_mask = None
|
277 |
-
):
|
278 |
-
seq_len, device = x.shape[-2], x.device
|
279 |
-
if self.pre_norm:
|
280 |
-
normed_x = self.norm(x)
|
281 |
-
else:
|
282 |
-
normed_x = x
|
283 |
-
v, gate = self.to_hidden(normed_x).chunk(2, dim = -1)
|
284 |
-
|
285 |
-
qk = self.to_qk(normed_x)
|
286 |
-
base = self.offsetscale(qk)
|
287 |
-
base = RoPE(base, 1)
|
288 |
-
q, k = base.unbind(dim = -2)
|
289 |
-
sim = torch.einsum('b i d, b j d -> b i j', q, k)
|
290 |
-
|
291 |
-
if relative_pos is not None:
|
292 |
-
sim = sim + relative_pos
|
293 |
-
if attention_mask is not None:
|
294 |
-
if attention_mask.dim() < 3:
|
295 |
-
attention_mask = einops.rearrange(attention_mask, 'b j -> b 1 j')
|
296 |
-
# attn = attn.masked_fill(~attention_mask.bool(), 0.)
|
297 |
-
attn = attention_normalize(sim, mask=attention_mask, fn=self.attention_norm_type)
|
298 |
-
# attn = F.relu(sim) ** 2 / seq_len# / q.size(-1)
|
299 |
-
# logger.info(attn.max())
|
300 |
-
attn = self.dropout(attn)
|
301 |
-
# if self.causal:
|
302 |
-
# causal_mask = torch.ones((seq_len, seq_len), dtype = torch.bool, device = device).triu(1)
|
303 |
-
# attn = attn.masked_fill(causal_mask, 0.)
|
304 |
-
|
305 |
-
out = torch.einsum('b i j, b j d -> b i d', attn, v)
|
306 |
-
out = out * gate
|
307 |
-
|
308 |
-
out = self.to_out(out)
|
309 |
-
|
310 |
-
if self.add_residual:
|
311 |
-
out = out + x
|
312 |
-
if not self.pre_norm:
|
313 |
-
out = self.norm(out)
|
314 |
-
return out
|
315 |
-
|
316 |
-
|
317 |
-
class GAULayer(nn.Module):
|
318 |
-
def __init__(self, config, shift_token=False, use_ffn=False):
|
319 |
-
super(GAULayer, self).__init__()
|
320 |
-
self.attention = GatedAttentionUnit(config.max_position_embeddings, config.hidden_size,
|
321 |
-
shift_token=shift_token, use_rel_bias=config.use_rel_bias,
|
322 |
-
norm_type=config.norm_type, attention_norm_type=config.attention_norm_type,
|
323 |
-
pre_norm=config.pre_norm, dropout=config.hidden_dropout_prob)
|
324 |
-
if use_ffn:
|
325 |
-
self.intermediate = BertIntermediate(config)
|
326 |
-
self.output = BertOutput(config)
|
327 |
-
self.use_ffn = use_ffn
|
328 |
-
|
329 |
-
def forward(self, hidden_states, attention_mask, return_att=False, query_states=None, relative_pos=None, rel_embeddings=None):
|
330 |
-
attention_output = self.attention(hidden_states, attention_mask=attention_mask, relative_pos=relative_pos)
|
331 |
-
if self.use_ffn:
|
332 |
-
intermediate_output = self.intermediate(attention_output)
|
333 |
-
layer_output = self.output(intermediate_output, attention_output)
|
334 |
-
return layer_output
|
335 |
-
else:
|
336 |
-
return attention_output
|
337 |
-
|
338 |
-
|
339 |
-
class FlashBlock(nn.Module):
|
340 |
-
"""
|
341 |
-
FLASH Block: Fast Linear Attention with a Single Head
|
342 |
-
"""
|
343 |
-
|
344 |
-
def __init__(self, model_size, sequence_length, chunk_size=256, expansion_factor=2, s=128, norm_type="layer_norm", eps=1e-5,
|
345 |
-
hidden_act="silu"):
|
346 |
-
super(FlashBlock, self).__init__()
|
347 |
-
self.s = s
|
348 |
-
self.eps = eps
|
349 |
-
self.norm_type = norm_type
|
350 |
-
self.model_size = model_size
|
351 |
-
self.chunk_size = chunk_size
|
352 |
-
self.hidden_act = hidden_act
|
353 |
-
self.sequence_length = sequence_length
|
354 |
-
self.expansion_factor = expansion_factor
|
355 |
-
self.e = int(self.model_size * self.expansion_factor)
|
356 |
-
|
357 |
-
self.dense1 = nn.Linear(self.model_size, 2 * self.e + self.s, bias=True)
|
358 |
-
self.gamma = nn.Parameter(torch.rand((4, self.s)))
|
359 |
-
self.beta = nn.Parameter(torch.rand((4, self.s)))
|
360 |
-
self.dense2 = nn.Linear(self.e, self.model_size)
|
361 |
-
self.LayerNorm = (
|
362 |
-
nn.LayerNorm(model_size, eps=self.eps) if norm_type == "layer_norm" else ScaleNorm(eps=self.eps))
|
363 |
-
|
364 |
-
nn.init.xavier_normal_(self.dense1.weight)
|
365 |
-
self.act_fn = ACT2FN(self.hidden_act)
|
366 |
-
|
367 |
-
def global_linear_attention(self, query, key, value, causal):
|
368 |
-
if causal:
|
369 |
-
kv = torch.einsum("bgcs, bgce->bgse", key, value)
|
370 |
-
kv = torch.cumsum(kv, dim=1)
|
371 |
-
lin_v = torch.einsum("bgcs, bgse->bgce", query, kv)
|
372 |
-
return lin_v
|
373 |
-
else:
|
374 |
-
kv = torch.einsum("bgcs, bgce->bse", key, value)
|
375 |
-
lin_v = torch.einsum("bgcs, bse->bgce", query, kv)
|
376 |
-
return lin_v
|
377 |
-
|
378 |
-
def segment_ids_to_mask(self, segment_ids, causal=False):
|
379 |
-
"""Generate the segment mask from the segment ids.
|
380 |
-
The segment mask is used to remove the attention between tokens in different documents.
|
381 |
-
"""
|
382 |
-
min_ids, max_ids = torch.min(segment_ids, dim=-1).values, torch.max(segment_ids, dim=-1).values
|
383 |
-
# 1.0 indicates in the same group and 0.0 otherwise
|
384 |
-
mask = torch.logical_and(torch.less_equal(min_ids[:, :, None], max_ids[:, None, :]),
|
385 |
-
torch.greater_equal(max_ids[:, :, None], min_ids[:, None, :]))
|
386 |
-
mask = torch.tensor(mask, torch.float32)
|
387 |
-
if causal:
|
388 |
-
g = segment_ids.size()[1]
|
389 |
-
causal_mask = 1.0 - torch.triu(torch.ones([g, g], dtype=torch.float32)) # 保留主对角线以及主对角线以上的元素
|
390 |
-
mask *= causal_mask
|
391 |
-
mask = torch.div(mask, torch.sum(mask, dim=-1, keepdim=True))
|
392 |
-
return mask
|
393 |
-
|
394 |
-
def forward(self, x, causal=False, attention_mask=None, sequence_mask=None, **kwargs):
|
395 |
-
"""
|
396 |
-
inputs: [batch_size, num_chunk, chunk_length, model_size]
|
397 |
-
"""
|
398 |
-
_, g, n, d = x.size()
|
399 |
-
shortcut, x = x, self.LayerNorm(x)
|
400 |
-
# 通过线性变换得到Z,见论文公式(4)
|
401 |
-
uv = self.dense1(x)
|
402 |
-
# 将uv按最后一维切分,得到Ug:[C*e],Vg:[C*e], Zg:[C*s], 论文中的3.2部分
|
403 |
-
# u:[batch_size, num_chunk, chunk_length, self.e]
|
404 |
-
# v:[batch_size, num_chunk, chunk_length, self.e]
|
405 |
-
# z:[batch_size, num_chunk, chunk_length, self.s]
|
406 |
-
u, v, z = torch.split(self.act_fn(uv), [self.e, self.e, self.s], dim=-1)
|
407 |
-
|
408 |
-
# 生���quad_q, quad_k, lin_q, lin_k
|
409 |
-
# 首先进行简单的offset和scale,融入RoPE位置向量
|
410 |
-
z = torch.einsum("...r, hr->...hr", z, self.gamma) + self.beta
|
411 |
-
z = RoPE(z, dim=[1, 2])
|
412 |
-
quad_q, quad_k, lin_q, lin_k = torch.unbind(z, dim=-2) # 按-2维进行分解得到quad_q, quad_k, lin_q和lin_k
|
413 |
-
# 计算global的lin_v
|
414 |
-
lin_v = self.global_linear_attention(lin_q, lin_k, v, causal)
|
415 |
-
if causal:
|
416 |
-
# 线性注意力部分
|
417 |
-
lin_kv = torch.einsum("bgnk, bgne->bgke", lin_k, lin_v) / torch.tensor(n, x.dtype) # 见公式(7)
|
418 |
-
mask = self.segment_ids_to_mask(segment_ids=segment_ids, causal=causal)
|
419 |
-
cum_lin_kv = torch.einsum('bhke, bgh->bgke', lin_kv, mask)
|
420 |
-
linear = torch.einsum("bgnk, bgke->bgne", lin_kv, cum_lin_kv)
|
421 |
-
# 二次注意力
|
422 |
-
quad_qk = torch.einsum("bgnk, bgmk->bgnm", quad_q, quad_k) # 论文Local attention per chunk部分
|
423 |
-
bias = rel_pos_bias(self.sequence_length, self.s)[:, :n, :n]
|
424 |
-
kernel = torch.square(F.relu(quad_qk / n + bias)) # 论文中的relu**2部分
|
425 |
-
causal_mask = torch.triu(torch.ones([n, n], dtype=x.dtype))
|
426 |
-
quadratic = torch.einsum("bgnm, bgme->bgne", kernel * causal_mask, v)
|
427 |
-
else:
|
428 |
-
lin_kv = torch.einsum("bgnk, bgne->bgke", lin_k, lin_v) / torch.tensor(n, x.dtype) # 见公式(7)
|
429 |
-
mask = self.segment_ids_to_mask(segment_ids=segment_ids, causal=causal)
|
430 |
-
lin_kv = torch.einsum("bhke, bgh->bgke", lin_kv, mask)
|
431 |
-
linear = torch.einsum("bgnk, bgke->bgne", lin_q, lin_kv)
|
432 |
-
# 二次注意力
|
433 |
-
quad_qk = torch.einsum("bgnk, bgmk->bgnm", quad_q, quad_k) # 论文Local attention per chunk部分
|
434 |
-
bias = rel_pos_bias(self.sequence_length, self.s)[:, :n, :n]
|
435 |
-
kernel = torch.square(F.relu(quad_qk / n + bias)) # 论文中的relu**2部分
|
436 |
-
quadratic = torch.einsum("bgnm, bgme->bgne", kernel, v)
|
437 |
-
x = u * (quadratic + linear)
|
438 |
-
x = self.dense2(x)
|
439 |
-
x = x + shortcut
|
440 |
-
return x
|
441 |
-
|
442 |
-
class RelativePositionBias(nn.Module):
|
443 |
-
def __init__(
|
444 |
-
self,
|
445 |
-
scale,
|
446 |
-
causal = False,
|
447 |
-
num_buckets = 32,
|
448 |
-
max_distance = 128
|
449 |
-
):
|
450 |
-
super().__init__()
|
451 |
-
self.scale = scale
|
452 |
-
self.causal = causal
|
453 |
-
self.num_buckets = num_buckets
|
454 |
-
self.max_distance = max_distance
|
455 |
-
self.relative_attention_bias = nn.Embedding(num_buckets, 1)
|
456 |
-
|
457 |
-
@staticmethod
|
458 |
-
def _relative_position_bucket(
|
459 |
-
relative_position,
|
460 |
-
causal = True,
|
461 |
-
num_buckets = 32,
|
462 |
-
max_distance = 128
|
463 |
-
):
|
464 |
-
ret = 0
|
465 |
-
n = -relative_position
|
466 |
-
if not causal:
|
467 |
-
num_buckets //= 2
|
468 |
-
ret += (n < 0).long() * num_buckets
|
469 |
-
n = torch.abs(n)
|
470 |
-
else:
|
471 |
-
n = torch.max(n, torch.zeros_like(n))
|
472 |
-
|
473 |
-
max_exact = num_buckets // 2
|
474 |
-
is_small = n < max_exact
|
475 |
-
|
476 |
-
val_if_large = max_exact + (
|
477 |
-
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
478 |
-
).long()
|
479 |
-
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
480 |
-
|
481 |
-
ret += torch.where(is_small, n, val_if_large)
|
482 |
-
return ret
|
483 |
-
|
484 |
-
def forward(self, x):
|
485 |
-
i, j, device = *x.shape[-2:], x.device
|
486 |
-
q_pos = torch.arange(i, dtype = torch.long, device = device)
|
487 |
-
k_pos = torch.arange(j, dtype = torch.long, device = device)
|
488 |
-
rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1')
|
489 |
-
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
|
490 |
-
values = self.relative_attention_bias(rp_bucket)
|
491 |
-
bias = rearrange(values, 'i j 1 -> i j')
|
492 |
-
return bias * self.scale
|
493 |
-
|
494 |
-
|
495 |
-
class FlashEmbeddings(nn.Module):
|
496 |
-
"""Construct the embeddings from word, position and token_type embeddings.
|
497 |
-
"""
|
498 |
-
def __init__(self, config, with_position=False):
|
499 |
-
super(FlashEmbeddings, self).__init__()
|
500 |
-
self.word_embeddings = nn.Embedding(
|
501 |
-
config.vocab_size, config.hidden_size)
|
502 |
-
self.token_type_embeddings = nn.Embedding(
|
503 |
-
config.type_vocab_size, config.hidden_size)
|
504 |
-
self.with_position = with_position
|
505 |
-
if with_position:
|
506 |
-
self.position_embeddings = ScaledSinuEmbedding(config.hidden_size)
|
507 |
-
|
508 |
-
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
509 |
-
# any TensorFlow checkpoint file
|
510 |
-
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5)
|
511 |
-
self.dropout = StableDropout(config.hidden_dropout_prob)
|
512 |
-
|
513 |
-
def forward(self, input_ids, token_type_ids=None, position_ids=None, token_mask=None):
|
514 |
-
seq_length = input_ids.size(1)
|
515 |
-
if position_ids is None:
|
516 |
-
position_ids = torch.arange(
|
517 |
-
seq_length, dtype=torch.long, device=input_ids.device)
|
518 |
-
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
519 |
-
if token_type_ids is None:
|
520 |
-
token_type_ids = torch.zeros_like(input_ids)
|
521 |
-
|
522 |
-
words_embeddings = self.word_embeddings(input_ids)
|
523 |
-
if self.with_position:
|
524 |
-
position_embeddings = self.position_embeddings(words_embeddings)
|
525 |
-
else:
|
526 |
-
position_embeddings = 0
|
527 |
-
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
528 |
-
|
529 |
-
# if self.num_pos_emb > 1:
|
530 |
-
# num_batch = position_embeddings.size(0)
|
531 |
-
# num_pos = position_embeddings.size(1)
|
532 |
-
# position_embeddings = position_embeddings.view(
|
533 |
-
# num_batch, num_pos, self.num_pos_emb, -1)[torch.arange(0, num_batch).long(), :, task_idx, :]
|
534 |
-
|
535 |
-
embeddings = words_embeddings + position_embeddings + token_type_embeddings
|
536 |
-
# if self.fp32_embedding:
|
537 |
-
# embeddings = embeddings.half()
|
538 |
-
embeddings = MaskedLayerNorm(self.LayerNorm, embeddings, token_mask)
|
539 |
-
embeddings = self.dropout(embeddings)
|
540 |
-
return {
|
541 |
-
'embeddings': embeddings,
|
542 |
-
'position_embeddings': position_embeddings}
|
543 |
-
|
544 |
-
|
545 |
-
class GAUEncoder(nn.Module):
|
546 |
-
def __init__(self, config, shift_token=False):
|
547 |
-
super().__init__()
|
548 |
-
layer = GAULayer(config, shift_token=shift_token)
|
549 |
-
self.layer = nn.ModuleList([copy.deepcopy(layer)
|
550 |
-
for _ in range(config.num_hidden_layers)])
|
551 |
-
|
552 |
-
def get_attention_mask(self, attention_mask):
|
553 |
-
if attention_mask.dim() <= 2:
|
554 |
-
extended_attention_mask = attention_mask.unsqueeze(1)
|
555 |
-
attention_mask = extended_attention_mask*extended_attention_mask.squeeze(-2).unsqueeze(-1)
|
556 |
-
attention_mask = attention_mask #.byte()
|
557 |
-
return attention_mask
|
558 |
-
|
559 |
-
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, return_att=False, query_states = None, relative_pos=None):
|
560 |
-
all_encoder_layers = []
|
561 |
-
att_matrices = []
|
562 |
-
if isinstance(hidden_states, Sequence):
|
563 |
-
next_kv = hidden_states[0]
|
564 |
-
else:
|
565 |
-
next_kv = hidden_states
|
566 |
-
# rel_embeddings = self.get_rel_embedding()
|
567 |
-
for i, layer_module in enumerate(self.layer):
|
568 |
-
output_states = layer_module(next_kv, attention_mask, query_states = query_states, relative_pos=relative_pos)
|
569 |
-
if return_att:
|
570 |
-
output_states, att_m = output_states
|
571 |
-
|
572 |
-
# if i == 0 and self.with_conv:
|
573 |
-
# prenorm = output_states #output['prenorm_states']
|
574 |
-
# output_states = self.conv(hidden_states, prenorm, input_mask)
|
575 |
-
|
576 |
-
if query_states is not None:
|
577 |
-
query_states = output_states
|
578 |
-
if isinstance(hidden_states, Sequence):
|
579 |
-
next_kv = hidden_states[i+1] if i+1 < len(self.layer) else None
|
580 |
-
else:
|
581 |
-
next_kv = output_states
|
582 |
-
|
583 |
-
if output_all_encoded_layers:
|
584 |
-
all_encoder_layers.append(output_states)
|
585 |
-
if return_att:
|
586 |
-
att_matrices.append(att_m)
|
587 |
-
if not output_all_encoded_layers:
|
588 |
-
all_encoder_layers.append(output_states)
|
589 |
-
if return_att:
|
590 |
-
att_matrices.append(att_m)
|
591 |
-
return {
|
592 |
-
'hidden_states': all_encoder_layers,
|
593 |
-
'attention_matrices': att_matrices
|
594 |
-
}
|
595 |
-
|
596 |
-
class FlashEncoder(nn.Module):
|
597 |
-
def __init__(self, config):
|
598 |
-
super().__init__(config)
|
599 |
-
layer = GateAttentionUnit(config.max_position_embeddings, config.hidden_size)
|
600 |
-
self.layer = nn.ModuleList([copy.deepcopy(layer)
|
601 |
-
for _ in range(config.num_hidden_layers)])
|
602 |
-
|
603 |
-
def forward(self, hidden_states, attention_mask, token_mask=None,
|
604 |
-
output_all_encoded_layers=True,
|
605 |
-
prev_embedding=None, prev_encoded_layers=None, mask_qkv=None, seg_ids=None):
|
606 |
-
# history embedding and encoded layer must be simultanously given
|
607 |
-
assert (prev_embedding is None) == (prev_encoded_layers is None)
|
608 |
-
|
609 |
-
all_encoder_layers = []
|
610 |
-
if (prev_embedding is not None) and (prev_encoded_layers is not None):
|
611 |
-
history_states = prev_embedding
|
612 |
-
for i, layer_module in enumerate(self.layer):
|
613 |
-
hidden_states = layer_module(
|
614 |
-
hidden_states, attention_mask, history_states=history_states, mask_qkv=mask_qkv, seg_ids=seg_ids)
|
615 |
-
if output_all_encoded_layers:
|
616 |
-
all_encoder_layers.append(hidden_states)
|
617 |
-
if prev_encoded_layers is not None:
|
618 |
-
history_states = prev_encoded_layers[i]
|
619 |
-
else:
|
620 |
-
for layer_module in self.layer:
|
621 |
-
hidden_states = layer_module(
|
622 |
-
hidden_states, attention_mask=attention_mask, mask_qkv=mask_qkv, seg_ids=seg_ids)
|
623 |
-
if output_all_encoded_layers:
|
624 |
-
all_encoder_layers.append(hidden_states)
|
625 |
-
if not output_all_encoded_layers:
|
626 |
-
all_encoder_layers.append(hidden_states)
|
627 |
-
return all_encoder_layers
|
628 |
-
|
629 |
-
# class FlashQuadModel(BertModel):
|
630 |
-
# def __init__(self, config, pooler=False, shift_token=False, causal=False) -> None:
|
631 |
-
# super().__init__(config)
|
632 |
-
# self.embeddings = FlashEmbeddings(config)
|
633 |
-
# self.encoder = GAUEncoder(config, causal=causal, shift_token=shift_token)
|
634 |
-
# if not pooler:
|
635 |
-
# self.pooler = None
|
636 |
-
# self.apply(self.init_bert_weights)
|
637 |
-
|
638 |
-
|
639 |
-
class FlashQuadModel(torch.nn.Module):
|
640 |
-
"""
|
641 |
-
Parameters:
|
642 |
-
config:
|
643 |
-
A model config class instance with the configuration to build a new model. The schema is similar to `BertConfig`,
|
644 |
-
|
645 |
-
pre_trained:
|
646 |
-
The pre-trained DeBERTa model, it can be a physical path of a pre-trained DeBERTa model or a released configurations,
|
647 |
-
i.e. [**base, large, base_mnli, large_mnli**]
|
648 |
-
|
649 |
-
"""
|
650 |
-
|
651 |
-
def __init__(self, config=None, pre_trained=None, pooler=False, shift_token=False, causal=False, **kwargs):
|
652 |
-
super().__init__()
|
653 |
-
state = None
|
654 |
-
if pre_trained is not None:
|
655 |
-
state, model_config = load_model_state(pre_trained)
|
656 |
-
if config is not None and model_config is not None:
|
657 |
-
for k in config.__dict__:
|
658 |
-
if k not in ['hidden_size',
|
659 |
-
'intermediate_size',
|
660 |
-
'num_attention_heads',
|
661 |
-
'num_hidden_layers',
|
662 |
-
'vocab_size',
|
663 |
-
'max_position_embeddings']:
|
664 |
-
model_config.__dict__[k] = config.__dict__[k]
|
665 |
-
config = copy.copy(model_config)
|
666 |
-
self.embeddings = FlashEmbeddings(config, with_position=True)
|
667 |
-
self.encoder = GAUEncoder(config, shift_token=shift_token)
|
668 |
-
if not pooler:
|
669 |
-
self.pooler = None
|
670 |
-
self.config = config
|
671 |
-
self.pre_trained = pre_trained
|
672 |
-
self.apply_state(state)
|
673 |
-
|
674 |
-
def get_attention_mask(self, input_ids=None, token_type_ids=None, attention_mask=None, input_mask=None):
|
675 |
-
if attention_mask is None:
|
676 |
-
if input_mask is not None:
|
677 |
-
return input_mask.unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), input_mask.size(1))
|
678 |
-
else:
|
679 |
-
return torch.ones_like(input_ids, dtype=torch.uint8).unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), input_mask.size(1))
|
680 |
-
else:
|
681 |
-
if attention_mask.dim() == 2:
|
682 |
-
if input_mask is not None:
|
683 |
-
attention_mask = attention_mask * input_mask
|
684 |
-
return attention_mask.unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), attention_mask.size(-1))
|
685 |
-
if attention_mask.dim() == 4:
|
686 |
-
attention_mask = attention_mask.squeeze(2)
|
687 |
-
if attention_mask.dim() == 3:
|
688 |
-
if input_mask is not None:
|
689 |
-
return attention_mask * input_mask.unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), attention_mask.size(-1))
|
690 |
-
else:
|
691 |
-
return attention_mask
|
692 |
-
|
693 |
-
|
694 |
-
def forward(self, input_ids, input_mask, attention_mask=None, token_type_ids=None,
|
695 |
-
output_all_encoded_layers=True, position_ids=None, return_att=False):
|
696 |
-
"""
|
697 |
-
Args:
|
698 |
-
input_ids:
|
699 |
-
a torch.LongTensor of shape [batch_size, sequence_length] \
|
700 |
-
with the word token indices in the vocabulary
|
701 |
-
|
702 |
-
attention_mask:
|
703 |
-
an optional parameter for input mask or attention mask.
|
704 |
-
|
705 |
-
- If it's an input mask, then it will be torch.LongTensor of shape [batch_size, sequence_length] with indices \
|
706 |
-
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
|
707 |
-
input sequence length in the current batch. It's the mask that we typically use for attention when \
|
708 |
-
a batch has varying length sentences.
|
709 |
-
|
710 |
-
- If it's an attention mask then it will be torch.LongTensor of shape [batch_size, sequence_length, sequence_length]. \
|
711 |
-
In this case, it's a mask indicate which tokens in the sequence should be attended by other tokens in the sequence.
|
712 |
-
|
713 |
-
token_type_ids:
|
714 |
-
an optional torch.LongTensor of shape [batch_size, sequence_length] with the token \
|
715 |
-
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
|
716 |
-
a `sentence B` token (see BERT paper for more details).
|
717 |
-
|
718 |
-
output_all_encoded_layers:
|
719 |
-
whether to output results of all encoder layers, default, True
|
720 |
-
|
721 |
-
Returns:
|
722 |
-
|
723 |
-
- The output of the stacked transformer layers if `output_all_encoded_layers=True`, else \
|
724 |
-
the last layer of stacked transformer layers
|
725 |
-
|
726 |
-
- Attention matrix of self-attention layers if `return_att=True`
|
727 |
-
|
728 |
-
|
729 |
-
Example::
|
730 |
-
|
731 |
-
# Batch of wordPiece token ids.
|
732 |
-
# Each sample was padded with zero to the maxium length of the batch
|
733 |
-
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
734 |
-
# Mask of valid input ids
|
735 |
-
attention_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
736 |
-
|
737 |
-
# DeBERTa model initialized with pretrained base model
|
738 |
-
bert = DeBERTa(pre_trained='base')
|
739 |
-
|
740 |
-
encoder_layers = bert(input_ids, attention_mask=attention_mask)
|
741 |
-
|
742 |
-
"""
|
743 |
-
if token_type_ids is None:
|
744 |
-
token_type_ids = torch.zeros_like(input_ids)
|
745 |
-
# input_mask = torch.ones_like(input_ids)
|
746 |
-
|
747 |
-
if input_mask is None:
|
748 |
-
idxs = torch.flip(torch.cumsum(torch.flip(token_type_ids, [-1]), axis=1), [-1])
|
749 |
-
input_mask = idxs > 0
|
750 |
-
if not torch.any(input_mask):
|
751 |
-
input_mask = torch.ones_like(input_ids)
|
752 |
-
input_mask = input_mask # .byte()
|
753 |
-
attention_mask = self.get_attention_mask(input_ids, token_type_ids, attention_mask, input_mask)
|
754 |
-
attention_mask = attention_mask #.byte()
|
755 |
-
embedding_output = self.embeddings(input_ids.to(torch.long), token_type_ids.to(torch.long), position_ids, input_mask)
|
756 |
-
encoder_output = self.encoder(embedding_output['embeddings'], attention_mask, output_all_encoded_layers=output_all_encoded_layers, return_att = return_att)
|
757 |
-
encoder_output.update(embedding_output)
|
758 |
-
return encoder_output
|
759 |
-
|
760 |
-
def apply_state(self, state = None):
|
761 |
-
""" Load state from previous loaded model state dictionary.
|
762 |
-
|
763 |
-
Args:
|
764 |
-
state (:obj:`dict`, optional): State dictionary as the state returned by torch.module.state_dict(), default: `None`. \
|
765 |
-
If it's `None`, then will use the pre-trained state loaded via the constructor to re-initialize \
|
766 |
-
the `DeBERTa` model
|
767 |
-
"""
|
768 |
-
if self.pre_trained is None and state is None:
|
769 |
-
return
|
770 |
-
if state is None:
|
771 |
-
state, config = load_model_state(self.pre_trained)
|
772 |
-
self.config = config
|
773 |
-
|
774 |
-
prefix = ''
|
775 |
-
for k in state:
|
776 |
-
if 'embeddings.' in k:
|
777 |
-
if not k.startswith('embeddings.'):
|
778 |
-
prefix = k[:k.index('embeddings.')]
|
779 |
-
break
|
780 |
-
|
781 |
-
missing_keys = []
|
782 |
-
unexpected_keys = []
|
783 |
-
error_msgs = []
|
784 |
-
self._load_from_state_dict(state, prefix = prefix, local_metadata=None, strict=True, missing_keys=missing_keys, unexpected_keys=unexpected_keys, error_msgs=error_msgs)
|
785 |
-
|
786 |
-
|
787 |
-
class FlashModel(BertModel):
|
788 |
-
def __init__(self, config) -> None:
|
789 |
-
super().__init__(config)
|
790 |
-
self.encoder = FlashEncoder(config)
|
791 |
-
self.apply(self.init_bert_weights)
|
792 |
-
|
793 |
-
if __name__ == '__main__':
|
794 |
-
model = FlashModel(768, 64)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling/focal_loss.py
DELETED
@@ -1,200 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import torch.cuda.amp as amp
|
5 |
-
|
6 |
-
|
7 |
-
##
|
8 |
-
# version 1: use torch.autograd
|
9 |
-
class FocalLossV1(nn.Module):
|
10 |
-
|
11 |
-
def __init__(self,
|
12 |
-
alpha=0.25,
|
13 |
-
gamma=2,
|
14 |
-
reduction='mean',):
|
15 |
-
super(FocalLossV1, self).__init__()
|
16 |
-
self.alpha = alpha
|
17 |
-
self.gamma = gamma
|
18 |
-
self.reduction = reduction
|
19 |
-
self.crit = nn.BCEWithLogitsLoss(reduction='none')
|
20 |
-
|
21 |
-
def forward(self, logits, label):
|
22 |
-
'''
|
23 |
-
Usage is same as nn.BCEWithLogits:
|
24 |
-
>>> criteria = FocalLossV1()
|
25 |
-
>>> logits = torch.randn(8, 19, 384, 384)
|
26 |
-
>>> lbs = torch.randint(0, 2, (8, 19, 384, 384)).float()
|
27 |
-
>>> loss = criteria(logits, lbs)
|
28 |
-
'''
|
29 |
-
probs = torch.sigmoid(logits)
|
30 |
-
coeff = torch.abs(label - probs).pow(self.gamma).neg()
|
31 |
-
log_probs = torch.where(logits >= 0,
|
32 |
-
F.softplus(logits, -1, 50),
|
33 |
-
logits - F.softplus(logits, 1, 50))
|
34 |
-
log_1_probs = torch.where(logits >= 0,
|
35 |
-
-logits + F.softplus(logits, -1, 50),
|
36 |
-
-F.softplus(logits, 1, 50))
|
37 |
-
loss = label * self.alpha * log_probs + (1. - label) * (1. - self.alpha) * log_1_probs
|
38 |
-
loss = loss * coeff
|
39 |
-
|
40 |
-
if self.reduction == 'mean':
|
41 |
-
loss = loss.mean()
|
42 |
-
if self.reduction == 'sum':
|
43 |
-
loss = loss.sum()
|
44 |
-
return loss
|
45 |
-
|
46 |
-
|
47 |
-
##
|
48 |
-
# version 2: user derived grad computation
|
49 |
-
class FocalSigmoidLossFuncV2(torch.autograd.Function):
|
50 |
-
'''
|
51 |
-
compute backward directly for better numeric stability
|
52 |
-
'''
|
53 |
-
@staticmethod
|
54 |
-
@amp.custom_fwd(cast_inputs=torch.float32)
|
55 |
-
def forward(ctx, logits, label, alpha, gamma):
|
56 |
-
# logits = logits.float()
|
57 |
-
|
58 |
-
probs = torch.sigmoid(logits)
|
59 |
-
coeff = (label - probs).abs_().pow_(gamma).neg_()
|
60 |
-
log_probs = torch.where(logits >= 0,
|
61 |
-
F.softplus(logits, -1, 50),
|
62 |
-
logits - F.softplus(logits, 1, 50))
|
63 |
-
log_1_probs = torch.where(logits >= 0,
|
64 |
-
-logits + F.softplus(logits, -1, 50),
|
65 |
-
-F.softplus(logits, 1, 50))
|
66 |
-
ce_term1 = log_probs.mul_(label).mul_(alpha)
|
67 |
-
ce_term2 = log_1_probs.mul_(1. - label).mul_(1. - alpha)
|
68 |
-
ce = ce_term1.add_(ce_term2)
|
69 |
-
loss = ce * coeff
|
70 |
-
|
71 |
-
ctx.vars = (coeff, probs, ce, label, gamma, alpha)
|
72 |
-
|
73 |
-
return loss
|
74 |
-
|
75 |
-
@staticmethod
|
76 |
-
@amp.custom_bwd
|
77 |
-
def backward(ctx, grad_output):
|
78 |
-
'''
|
79 |
-
compute gradient of focal loss
|
80 |
-
'''
|
81 |
-
(coeff, probs, ce, label, gamma, alpha) = ctx.vars
|
82 |
-
|
83 |
-
d_coeff = (label - probs).abs_().pow_(gamma - 1.).mul_(gamma)
|
84 |
-
d_coeff.mul_(probs).mul_(1. - probs)
|
85 |
-
d_coeff = torch.where(label < probs, d_coeff.neg(), d_coeff)
|
86 |
-
term1 = d_coeff.mul_(ce)
|
87 |
-
|
88 |
-
d_ce = label * alpha
|
89 |
-
d_ce.sub_(probs.mul_((label * alpha).mul_(2).add_(1).sub_(label).sub_(alpha)))
|
90 |
-
term2 = d_ce.mul(coeff)
|
91 |
-
|
92 |
-
grads = term1.add_(term2)
|
93 |
-
grads.mul_(grad_output)
|
94 |
-
|
95 |
-
return grads, None, None, None
|
96 |
-
|
97 |
-
|
98 |
-
class FocalLossV2(nn.Module):
|
99 |
-
|
100 |
-
def __init__(self,
|
101 |
-
alpha=0.25,
|
102 |
-
gamma=2,
|
103 |
-
reduction='mean'):
|
104 |
-
super(FocalLossV2, self).__init__()
|
105 |
-
self.alpha = alpha
|
106 |
-
self.gamma = gamma
|
107 |
-
self.reduction = reduction
|
108 |
-
|
109 |
-
def forward(self, logits, label):
|
110 |
-
'''
|
111 |
-
Usage is same as nn.BCEWithLogits:
|
112 |
-
>>> criteria = FocalLossV2()
|
113 |
-
>>> logits = torch.randn(8, 19, 384, 384)
|
114 |
-
>>> lbs = torch.randint(0, 2, (8, 19, 384, 384)).float()
|
115 |
-
>>> loss = criteria(logits, lbs)
|
116 |
-
'''
|
117 |
-
loss = FocalSigmoidLossFuncV2.apply(logits, label, self.alpha, self.gamma)
|
118 |
-
if self.reduction == 'mean':
|
119 |
-
loss = loss.mean()
|
120 |
-
if self.reduction == 'sum':
|
121 |
-
loss = loss.sum()
|
122 |
-
return loss
|
123 |
-
|
124 |
-
|
125 |
-
if __name__ == '__main__':
|
126 |
-
import torchvision
|
127 |
-
import torch
|
128 |
-
import numpy as np
|
129 |
-
import random
|
130 |
-
torch.manual_seed(15)
|
131 |
-
random.seed(15)
|
132 |
-
np.random.seed(15)
|
133 |
-
torch.backends.cudnn.deterministic = True
|
134 |
-
|
135 |
-
class Model(nn.Module):
|
136 |
-
def __init__(self):
|
137 |
-
super(Model, self).__init__()
|
138 |
-
net = torchvision.models.resnet18(pretrained=False)
|
139 |
-
self.conv1 = net.conv1
|
140 |
-
self.bn1 = net.bn1
|
141 |
-
self.maxpool = net.maxpool
|
142 |
-
self.relu = net.relu
|
143 |
-
self.layer1 = net.layer1
|
144 |
-
self.layer2 = net.layer2
|
145 |
-
self.layer3 = net.layer3
|
146 |
-
self.layer4 = net.layer4
|
147 |
-
self.out = nn.Conv2d(512, 3, 3, 1, 1)
|
148 |
-
def forward(self, x):
|
149 |
-
feat = self.conv1(x)
|
150 |
-
feat = self.bn1(feat)
|
151 |
-
feat = self.relu(feat)
|
152 |
-
feat = self.maxpool(feat)
|
153 |
-
feat = self.layer1(feat)
|
154 |
-
feat = self.layer2(feat)
|
155 |
-
feat = self.layer3(feat)
|
156 |
-
feat = self.layer4(feat)
|
157 |
-
feat = self.out(feat)
|
158 |
-
out = F.interpolate(feat, x.size()[2:], mode='bilinear', align_corners=True)
|
159 |
-
return out
|
160 |
-
net1 = Model()
|
161 |
-
net2 = Model()
|
162 |
-
net2.load_state_dict(net1.state_dict())
|
163 |
-
|
164 |
-
criteria1 = FocalLossV2()
|
165 |
-
# criteria2 = FocalLossV3()
|
166 |
-
net1.cuda()
|
167 |
-
net2.cuda()
|
168 |
-
net1.train()
|
169 |
-
net2.train()
|
170 |
-
net1.double()
|
171 |
-
net2.double()
|
172 |
-
criteria1.cuda()
|
173 |
-
# criteria2.cuda()
|
174 |
-
|
175 |
-
optim1 = torch.optim.SGD(net1.parameters(), lr=1e-2)
|
176 |
-
# optim2 = torch.optim.SGD(net2.parameters(), lr=1e-2)
|
177 |
-
|
178 |
-
bs = 16
|
179 |
-
for it in range(300000):
|
180 |
-
inten = torch.randn(bs, 3, 224, 244).cuda()
|
181 |
-
# lbs = torch.randint(0, 2, (bs, 3, 224, 244)).float().cuda()
|
182 |
-
lbs = torch.randn(bs, 3, 224, 244).sigmoid().cuda()
|
183 |
-
inten = inten.double()
|
184 |
-
lbs = lbs.double()
|
185 |
-
logits = net1(inten)
|
186 |
-
loss1 = criteria1(logits, lbs)
|
187 |
-
optim1.zero_grad()
|
188 |
-
loss1.backward()
|
189 |
-
optim1.step()
|
190 |
-
# logits = net2(inten)
|
191 |
-
# loss2 = criteria2(logits, lbs)
|
192 |
-
# optim2.zero_grad()
|
193 |
-
# loss2.backward()
|
194 |
-
# optim2.step()
|
195 |
-
# with torch.no_grad():
|
196 |
-
# if (it+1) % 50 == 0:
|
197 |
-
# print('iter: {}, ================='.format(it+1))
|
198 |
-
# print('out.weight: ', torch.mean(torch.abs(net1.out.weight - net2.out.weight)).item())
|
199 |
-
# print('conv1.weight: ', torch.mean(torch.abs(net1.conv1.weight - net2.conv1.weight)).item())
|
200 |
-
# print('loss: ', loss1.item() - loss2.item())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling/gat.py
DELETED
@@ -1,665 +0,0 @@
|
|
1 |
-
#
|
2 |
-
# Zhoubo
|
3 |
-
#
|
4 |
-
"""
|
5 |
-
FLASH: https://arxiv.org/abs/2202.10447
|
6 |
-
"""
|
7 |
-
import copy
|
8 |
-
import torch
|
9 |
-
import math
|
10 |
-
import os
|
11 |
-
from collections import Sequence
|
12 |
-
import json
|
13 |
-
import numpy as np
|
14 |
-
import torch
|
15 |
-
import torch.nn as nn
|
16 |
-
import torch.nn.functional as F
|
17 |
-
from transformers.activations import ACT2FN
|
18 |
-
from .ops import sequence_masking, XSoftmax, StableDropout, MaskedLayerNorm
|
19 |
-
from .config import ModelConfig
|
20 |
-
from .cache_utils import load_model_state
|
21 |
-
import einops
|
22 |
-
|
23 |
-
|
24 |
-
class ScaleNorm(nn.Module):
|
25 |
-
def __init__(self, eps=1e-5):
|
26 |
-
super().__init__()
|
27 |
-
self.eps = eps
|
28 |
-
self.scala = nn.Parameter(torch.ones(1))
|
29 |
-
|
30 |
-
def forward(self, x):
|
31 |
-
mean_square = (x ** 2).mean(dim=-1, keepdim=True)
|
32 |
-
x = x * torch.rsqrt(mean_square + self.eps) * self.scala
|
33 |
-
return x
|
34 |
-
|
35 |
-
|
36 |
-
class BertLayerNorm(nn.Module):
|
37 |
-
def __init__(self, hidden_size, eps=1e-5):
|
38 |
-
"""Construct a layernorm module in the TF style (epsilon inside the square root).
|
39 |
-
"""
|
40 |
-
super(BertLayerNorm, self).__init__()
|
41 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
42 |
-
self.bias = nn.Parameter(torch.zeros(hidden_size))
|
43 |
-
self.variance_epsilon = eps
|
44 |
-
|
45 |
-
def forward(self, x):
|
46 |
-
u = x.mean(-1, keepdim=True)
|
47 |
-
s = (x - u).pow(2).mean(-1, keepdim=True)
|
48 |
-
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
49 |
-
return self.weight * x + self.bias
|
50 |
-
|
51 |
-
|
52 |
-
class ScaledSinuEmbedding(nn.Module):
|
53 |
-
def __init__(self, dim):
|
54 |
-
super().__init__()
|
55 |
-
self.scale = nn.Parameter(torch.ones(1,))
|
56 |
-
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
57 |
-
self.register_buffer('inv_freq', inv_freq)
|
58 |
-
|
59 |
-
def forward(self, x):
|
60 |
-
n, device = x.shape[1], x.device
|
61 |
-
t = torch.arange(n, device = device).type_as(self.inv_freq)
|
62 |
-
sinu = torch.einsum('i , j -> i j', t, self.inv_freq)
|
63 |
-
emb = torch.cat((sinu.sin(), sinu.cos()), dim = -1)
|
64 |
-
return emb * self.scale
|
65 |
-
|
66 |
-
|
67 |
-
def RoPE(x, dim):
|
68 |
-
"""
|
69 |
-
:param x: input tensor
|
70 |
-
:param dim: oprate dimension
|
71 |
-
:return: tensor
|
72 |
-
"""
|
73 |
-
shape = x.shape
|
74 |
-
if isinstance(dim, int):
|
75 |
-
dim = [dim]
|
76 |
-
|
77 |
-
spatial_shape = [shape[i] for i in dim]
|
78 |
-
total_len = 1
|
79 |
-
for i in spatial_shape:
|
80 |
-
total_len *= i
|
81 |
-
position = torch.reshape(torch.arange(total_len, dtype=torch.float, device=x.device), spatial_shape)
|
82 |
-
|
83 |
-
for i in range(dim[-1] + 1, len(shape) - 1, 1):
|
84 |
-
position = torch.unsqueeze(position, dim=-1)
|
85 |
-
|
86 |
-
half_size = shape[-1] // 2
|
87 |
-
freq_seq = -torch.arange(half_size, dtype=torch.float, device=x.device) / float(half_size)
|
88 |
-
inv_freq = 10000 ** -freq_seq
|
89 |
-
sinusoid = torch.einsum("...,d->...d", position, inv_freq)
|
90 |
-
sin = torch.sin(sinusoid)
|
91 |
-
cos = torch.cos(sinusoid)
|
92 |
-
x1, x2 = torch.chunk(x, 2, dim=-1)
|
93 |
-
return torch.cat([x1 * cos - x2 * sin, x2 * cos + x1 * sin], dim=-1)
|
94 |
-
|
95 |
-
|
96 |
-
def rel_pos_bias(seq_len, s):
|
97 |
-
a = torch.rand([1, s], dtype=torch.float)
|
98 |
-
b = torch.rand([1, s], dtype=torch.float)
|
99 |
-
w = torch.rand([2 * seq_len - 1], dtype=torch.float)
|
100 |
-
if seq_len <= 512:
|
101 |
-
t = F.pad(w[: 2 * seq_len - 1], [0, seq_len]).repeat(seq_len)
|
102 |
-
t = t[..., :-seq_len].reshape(-1, seq_len, 3 * seq_len - 2)
|
103 |
-
r = (2 * seq_len - 1) // 2
|
104 |
-
t = t[..., r:-r]
|
105 |
-
else:
|
106 |
-
a = RoPE(a.repeat(seq_len, 1), dim=[0])
|
107 |
-
b = RoPE(b.repeat(seq_len, 1), dim=[0])
|
108 |
-
t = torch.einsum("mk,nk->mn", a, b)
|
109 |
-
return t
|
110 |
-
|
111 |
-
def squared_relu(x, attention_mask, dim=-1):
|
112 |
-
rmask = ~(attention_mask.bool())
|
113 |
-
x = x.masked_fill(rmask, 0)
|
114 |
-
return torch.square(F.relu(x))
|
115 |
-
|
116 |
-
|
117 |
-
def attention_normalize(a, axis=-1, mask=None, fn='softmax'):
|
118 |
-
if fn == 'softmax':
|
119 |
-
return XSoftmax.apply(a, mask, axis)
|
120 |
-
else:
|
121 |
-
mask_ = a > -float('inf') / 10
|
122 |
-
# mask_ = mask_.byte()
|
123 |
-
mask_ = torch.sum(mask_, axis=axis, keepdim=True)
|
124 |
-
l = torch.maximum(mask_, torch.ones_like(mask_))
|
125 |
-
if fn == 'relu':
|
126 |
-
rmask = ~(mask.bool())
|
127 |
-
a = a.masked_fill(rmask, 0)
|
128 |
-
return torch.square(F.relu(a)) / l
|
129 |
-
elif fn == 'softmax_plus':
|
130 |
-
return XSoftmax.apply(a * torch.log(l) / np.log(512), mask, axis)
|
131 |
-
return a
|
132 |
-
|
133 |
-
|
134 |
-
class GAULinear(nn.Linear):
|
135 |
-
def init_weight(self):
|
136 |
-
nn.init.xavier_uniform_(self.weight)
|
137 |
-
|
138 |
-
|
139 |
-
class GatedAttentionUnit(nn.Module):
|
140 |
-
"""
|
141 |
-
GAU Block: Gate Attention Unit
|
142 |
-
"""
|
143 |
-
def __init__(
|
144 |
-
self,
|
145 |
-
max_seq_length,
|
146 |
-
hidden_size,
|
147 |
-
attention_key_size=128,
|
148 |
-
activation='swish',
|
149 |
-
use_bias=True,
|
150 |
-
attention_norm_type='squared_relu',
|
151 |
-
attention_scale=True,
|
152 |
-
dropout=0.1,
|
153 |
-
pre_norm=False,
|
154 |
-
norm_type="layer_norm",
|
155 |
-
eps=1e-5,
|
156 |
-
shift_token=False,
|
157 |
-
use_rel_bias=False,
|
158 |
-
add_residual=True,
|
159 |
-
**kwargs,):
|
160 |
-
|
161 |
-
super(GatedAttentionUnit, self).__init__(**kwargs)
|
162 |
-
self.max_seq_length = max_seq_length
|
163 |
-
self.units = hidden_size
|
164 |
-
self.intermediate_size = self.units * 2
|
165 |
-
self.key_size = attention_key_size
|
166 |
-
self.activation = activation
|
167 |
-
self.use_bias = use_bias
|
168 |
-
self.attention_norm_type = attention_norm_type
|
169 |
-
self.attention_scale = attention_scale
|
170 |
-
self.dropout = StableDropout(dropout)
|
171 |
-
self.i_dense = nn.Sequential(
|
172 |
-
nn.Linear(self.units, 2 * self.intermediate_size + self.key_size, bias=self.use_bias),
|
173 |
-
nn.SiLU()
|
174 |
-
)
|
175 |
-
self.o_dense = nn.Sequential(
|
176 |
-
nn.Linear(self.intermediate_size, self.units, bias=self.use_bias),
|
177 |
-
self.dropout)
|
178 |
-
self.q_scaleoffset = OffsetScale(self.key_size)
|
179 |
-
self.k_scaleoffset = OffsetScale(self.key_size)
|
180 |
-
self.pre_norm = pre_norm
|
181 |
-
self.norm = (nn.LayerNorm(hidden_size, eps=eps) if norm_type.lower() == "layer_norm" else ScaleNorm(eps=eps))
|
182 |
-
self.add_residual = add_residual
|
183 |
-
|
184 |
-
def forward(self, x, attention_mask=None, **kwargs):
|
185 |
-
shortcut = x
|
186 |
-
|
187 |
-
if self.pre_norm:
|
188 |
-
x = self.norm(x)
|
189 |
-
|
190 |
-
x = self.i_dense(x)
|
191 |
-
u, v, qk = torch.split(x, [self.intermediate_size, self.intermediate_size, self.key_size], dim=-1)
|
192 |
-
q, k = self.q_scaleoffset(qk), self.k_scaleoffset(qk)
|
193 |
-
qk = RoPE(torch.stack([q, k], 2), dim=1)
|
194 |
-
q, k = qk[:, :, 0], qk[:, :, 1]
|
195 |
-
a = torch.einsum('bmd,bnd->bmn', q, k)
|
196 |
-
if self.attention_scale:
|
197 |
-
a = a / self.key_size**0.5
|
198 |
-
a = sequence_masking(a, attention_mask, '-inf', -1)
|
199 |
-
A = attention_normalize(a, -1, fn=self.attention_norm_type)
|
200 |
-
if self.dropout:
|
201 |
-
A = self.dropout(A)
|
202 |
-
out = self.o_dense(u * torch.einsum('bmn,bnd->bmd', A, v))
|
203 |
-
|
204 |
-
if self.add_residual:
|
205 |
-
out = out + shortcut
|
206 |
-
if not self.pre_norm:
|
207 |
-
out = self.norm(out)
|
208 |
-
return out
|
209 |
-
|
210 |
-
|
211 |
-
class OffsetScale(nn.Module):
|
212 |
-
def __init__(self, dim, heads = 1):
|
213 |
-
super().__init__()
|
214 |
-
self.gamma = nn.Parameter(torch.ones(heads, dim))
|
215 |
-
self.beta = nn.Parameter(torch.zeros(heads, dim))
|
216 |
-
# nn.init.normal_(self.gamma, std = 0.02)
|
217 |
-
nn.init.xavier_uniform_(self.gamma)
|
218 |
-
|
219 |
-
def forward(self, x):
|
220 |
-
out = torch.einsum('... d, h d -> ... h d', x, self.gamma) + self.beta
|
221 |
-
return out
|
222 |
-
|
223 |
-
|
224 |
-
class BertIntermediate(nn.Module):
|
225 |
-
def __init__(self, config):
|
226 |
-
super().__init__()
|
227 |
-
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
228 |
-
self.intermediate_act_fn = ACT2FN[config.hidden_act] \
|
229 |
-
if isinstance(config.hidden_act, str) else config.hidden_act
|
230 |
-
|
231 |
-
def forward(self, hidden_states):
|
232 |
-
hidden_states = self.dense(hidden_states)
|
233 |
-
hidden_states = self.intermediate_act_fn(hidden_states)
|
234 |
-
return hidden_states
|
235 |
-
|
236 |
-
|
237 |
-
class BertOutput(nn.Module):
|
238 |
-
def __init__(self, config):
|
239 |
-
super(BertOutput, self).__init__()
|
240 |
-
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
241 |
-
self.LayerNorm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps)
|
242 |
-
self.dropout = StableDropout(config.hidden_dropout_prob)
|
243 |
-
self.config = config
|
244 |
-
|
245 |
-
def forward(self, hidden_states, input_states, mask=None):
|
246 |
-
hidden_states = self.dense(hidden_states)
|
247 |
-
hidden_states = self.dropout(hidden_states)
|
248 |
-
hidden_states += input_states
|
249 |
-
hidden_states = MaskedLayerNorm(self.LayerNorm, hidden_states)
|
250 |
-
return hidden_states
|
251 |
-
|
252 |
-
|
253 |
-
class GAU(nn.Module):
|
254 |
-
def __init__(self, max_seq_length, hidden_size, expansion_factor=2, s=128, norm_type="layer_norm", eps=1e-5,
|
255 |
-
hidden_act="silu", shift_token=False, use_rel_bias=False, attention_norm_type='softmax',
|
256 |
-
pre_norm=False, dropout=0, add_residual = True):
|
257 |
-
super(GAU, self).__init__()
|
258 |
-
self.max_seq_length = max_seq_length
|
259 |
-
self.shift_token = shift_token
|
260 |
-
hidden_dim = int(expansion_factor * hidden_size)
|
261 |
-
self.norm = (nn.LayerNorm(hidden_size, eps=eps) if norm_type == "layer_norm" else ScaleNorm(eps=eps))
|
262 |
-
self.use_rel_bias = use_rel_bias
|
263 |
-
self.attention_norm_type = attention_norm_type
|
264 |
-
# if attention_norm_type == 'relu':
|
265 |
-
# self.attention_norm_func = squared_relu
|
266 |
-
# else:
|
267 |
-
# self.attention_norm_func = XSoftmax.apply
|
268 |
-
# self.norm = norm_klass(hidden_size)
|
269 |
-
|
270 |
-
self.dropout = nn.Dropout(dropout)
|
271 |
-
|
272 |
-
self.to_hidden = nn.Sequential(
|
273 |
-
nn.Linear(hidden_size, hidden_dim * 2),
|
274 |
-
nn.SiLU()
|
275 |
-
)
|
276 |
-
|
277 |
-
self.to_qk = nn.Sequential(
|
278 |
-
nn.Linear(hidden_size, s),
|
279 |
-
nn.SiLU()
|
280 |
-
)
|
281 |
-
|
282 |
-
self.offsetscale = OffsetScale(s, heads = 2)
|
283 |
-
|
284 |
-
self.to_out = nn.Sequential(
|
285 |
-
nn.Linear(hidden_dim, hidden_size),
|
286 |
-
nn.Dropout(dropout)
|
287 |
-
)
|
288 |
-
|
289 |
-
self.add_residual = add_residual
|
290 |
-
self.act_fn = ACT2FN[hidden_act]
|
291 |
-
self.pre_norm = pre_norm
|
292 |
-
|
293 |
-
|
294 |
-
def forward(
|
295 |
-
self,
|
296 |
-
x,
|
297 |
-
relative_pos = None,
|
298 |
-
attention_mask = None
|
299 |
-
):
|
300 |
-
seq_len, device = x.shape[-2], x.device
|
301 |
-
if self.pre_norm:
|
302 |
-
normed_x = self.norm(x)
|
303 |
-
else:
|
304 |
-
normed_x = x
|
305 |
-
v, gate = self.to_hidden(normed_x).chunk(2, dim = -1)
|
306 |
-
|
307 |
-
qk = self.to_qk(normed_x)
|
308 |
-
base = self.offsetscale(qk)
|
309 |
-
base = RoPE(base, 1).half()
|
310 |
-
q, k = base.unbind(dim = -2)
|
311 |
-
sim = torch.einsum('b i d, b j d -> b i j', q, k)
|
312 |
-
|
313 |
-
if relative_pos is not None:
|
314 |
-
sim = sim + relative_pos
|
315 |
-
if attention_mask is not None:
|
316 |
-
if attention_mask.dim() < 3:
|
317 |
-
attention_mask = einops.rearrange(attention_mask, 'b j -> b 1 j')
|
318 |
-
# attn = attn.masked_fill(~attention_mask.bool(), 0.)
|
319 |
-
attn = attention_normalize(sim, mask=attention_mask, fn=self.attention_norm_type)
|
320 |
-
# attn = F.relu(sim) ** 2 / seq_len# / q.size(-1)
|
321 |
-
# logger.info(attn.max())
|
322 |
-
attn = self.dropout(attn)
|
323 |
-
# if self.causal:
|
324 |
-
# causal_mask = torch.ones((seq_len, seq_len), dtype = torch.bool, device = device).triu(1)
|
325 |
-
# attn = attn.masked_fill(causal_mask, 0.)
|
326 |
-
|
327 |
-
out = torch.einsum('b i j, b j d -> b i d', attn.half(), v)
|
328 |
-
out = out * gate
|
329 |
-
|
330 |
-
out = self.to_out(out)
|
331 |
-
|
332 |
-
if self.add_residual:
|
333 |
-
out = out + x
|
334 |
-
if not self.pre_norm:
|
335 |
-
out = self.norm(out)
|
336 |
-
return out
|
337 |
-
|
338 |
-
|
339 |
-
class GatLayer(nn.Module):
|
340 |
-
def __init__(self, config, shift_token=False, use_ffn=False):
|
341 |
-
super(GatLayer, self).__init__()
|
342 |
-
self.attention = GatedAttentionUnit(config.max_position_embeddings, config.hidden_size,
|
343 |
-
shift_token=shift_token, use_rel_bias=config.use_rel_bias,
|
344 |
-
norm_type=config.norm_type, attention_norm_type=config.attention_norm_type,
|
345 |
-
pre_norm=config.pre_norm, dropout=config.hidden_dropout_prob)
|
346 |
-
if use_ffn:
|
347 |
-
self.intermediate = BertIntermediate(config)
|
348 |
-
self.output = BertOutput(config)
|
349 |
-
self.use_ffn = use_ffn
|
350 |
-
|
351 |
-
def forward(self, hidden_states, attention_mask, return_att=False, query_states=None, relative_pos=None, rel_embeddings=None):
|
352 |
-
attention_output = self.attention(hidden_states, attention_mask=attention_mask, relative_pos=relative_pos)
|
353 |
-
if self.use_ffn:
|
354 |
-
intermediate_output = self.intermediate(attention_output)
|
355 |
-
layer_output = self.output(intermediate_output, attention_output)
|
356 |
-
return layer_output
|
357 |
-
else:
|
358 |
-
return attention_output
|
359 |
-
|
360 |
-
|
361 |
-
class RelativePositionBias(nn.Module):
|
362 |
-
def __init__(
|
363 |
-
self,
|
364 |
-
scale,
|
365 |
-
causal = False,
|
366 |
-
num_buckets = 32,
|
367 |
-
max_distance = 128
|
368 |
-
):
|
369 |
-
super().__init__()
|
370 |
-
self.scale = scale
|
371 |
-
self.causal = causal
|
372 |
-
self.num_buckets = num_buckets
|
373 |
-
self.max_distance = max_distance
|
374 |
-
self.relative_attention_bias = nn.Embedding(num_buckets, 1)
|
375 |
-
|
376 |
-
@staticmethod
|
377 |
-
def _relative_position_bucket(
|
378 |
-
relative_position,
|
379 |
-
causal = True,
|
380 |
-
num_buckets = 32,
|
381 |
-
max_distance = 128
|
382 |
-
):
|
383 |
-
ret = 0
|
384 |
-
n = -relative_position
|
385 |
-
if not causal:
|
386 |
-
num_buckets //= 2
|
387 |
-
ret += (n < 0).long() * num_buckets
|
388 |
-
n = torch.abs(n)
|
389 |
-
else:
|
390 |
-
n = torch.max(n, torch.zeros_like(n))
|
391 |
-
|
392 |
-
max_exact = num_buckets // 2
|
393 |
-
is_small = n < max_exact
|
394 |
-
|
395 |
-
val_if_large = max_exact + (
|
396 |
-
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
397 |
-
).long()
|
398 |
-
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
399 |
-
|
400 |
-
ret += torch.where(is_small, n, val_if_large)
|
401 |
-
return ret
|
402 |
-
|
403 |
-
def forward(self, x):
|
404 |
-
i, j, device = *x.shape[-2:], x.device
|
405 |
-
q_pos = torch.arange(i, dtype = torch.long, device = device)
|
406 |
-
k_pos = torch.arange(j, dtype = torch.long, device = device)
|
407 |
-
rel_pos = einops.rearrange(k_pos, 'j -> 1 j') - einops.rearrange(q_pos, 'i -> i 1')
|
408 |
-
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
|
409 |
-
values = self.relative_attention_bias(rp_bucket)
|
410 |
-
bias = einops.rearrange(values, 'i j 1 -> i j')
|
411 |
-
return bias * self.scale
|
412 |
-
|
413 |
-
|
414 |
-
class GatEmbeddings(nn.Module):
|
415 |
-
"""Construct the embeddings from word, position and token_type embeddings.
|
416 |
-
"""
|
417 |
-
def __init__(self, config, with_position=False):
|
418 |
-
super(GatEmbeddings, self).__init__()
|
419 |
-
self.word_embeddings = nn.Embedding(
|
420 |
-
config.vocab_size, config.hidden_size)
|
421 |
-
self.token_type_embeddings = nn.Embedding(
|
422 |
-
config.type_vocab_size, config.hidden_size)
|
423 |
-
self.with_position = with_position
|
424 |
-
if with_position:
|
425 |
-
self.position_embeddings = ScaledSinuEmbedding(config.hidden_size)
|
426 |
-
|
427 |
-
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
428 |
-
# any TensorFlow checkpoint file
|
429 |
-
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-5)
|
430 |
-
self.dropout = StableDropout(config.hidden_dropout_prob)
|
431 |
-
|
432 |
-
def forward(self, input_ids, token_type_ids=None, position_ids=None, token_mask=None):
|
433 |
-
seq_length = input_ids.size(1)
|
434 |
-
if position_ids is None:
|
435 |
-
position_ids = torch.arange(
|
436 |
-
seq_length, dtype=torch.long, device=input_ids.device)
|
437 |
-
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
438 |
-
if token_type_ids is None:
|
439 |
-
token_type_ids = torch.zeros_like(input_ids)
|
440 |
-
|
441 |
-
words_embeddings = self.word_embeddings(input_ids)
|
442 |
-
if self.with_position:
|
443 |
-
position_embeddings = self.position_embeddings(words_embeddings)
|
444 |
-
else:
|
445 |
-
position_embeddings = 0
|
446 |
-
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
447 |
-
|
448 |
-
# if self.num_pos_emb > 1:
|
449 |
-
# num_batch = position_embeddings.size(0)
|
450 |
-
# num_pos = position_embeddings.size(1)
|
451 |
-
# position_embeddings = position_embeddings.view(
|
452 |
-
# num_batch, num_pos, self.num_pos_emb, -1)[torch.arange(0, num_batch).long(), :, task_idx, :]
|
453 |
-
|
454 |
-
embeddings = words_embeddings + position_embeddings + token_type_embeddings
|
455 |
-
# if self.fp32_embedding:
|
456 |
-
# embeddings = embeddings.half()
|
457 |
-
embeddings = MaskedLayerNorm(self.LayerNorm, embeddings, token_mask)
|
458 |
-
embeddings = self.dropout(embeddings)
|
459 |
-
return {
|
460 |
-
'embeddings': embeddings,
|
461 |
-
'position_embeddings': position_embeddings}
|
462 |
-
|
463 |
-
|
464 |
-
class GatEncoder(nn.Module):
|
465 |
-
def __init__(self, config, shift_token=False):
|
466 |
-
super().__init__()
|
467 |
-
layer = GatLayer(config, shift_token=shift_token)
|
468 |
-
self.layer = nn.ModuleList([copy.deepcopy(layer)
|
469 |
-
for _ in range(config.num_hidden_layers)])
|
470 |
-
|
471 |
-
def get_attention_mask(self, attention_mask):
|
472 |
-
if attention_mask.dim() <= 2:
|
473 |
-
extended_attention_mask = attention_mask.unsqueeze(1)
|
474 |
-
attention_mask = extended_attention_mask*extended_attention_mask.squeeze(-2).unsqueeze(-1)
|
475 |
-
attention_mask = attention_mask.byte()
|
476 |
-
return attention_mask
|
477 |
-
|
478 |
-
def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, return_att=False, query_states = None, relative_pos=None):
|
479 |
-
all_encoder_layers = []
|
480 |
-
att_matrices = []
|
481 |
-
if isinstance(hidden_states, Sequence):
|
482 |
-
next_kv = hidden_states[0]
|
483 |
-
else:
|
484 |
-
next_kv = hidden_states
|
485 |
-
# rel_embeddings = self.get_rel_embedding()
|
486 |
-
for i, layer_module in enumerate(self.layer):
|
487 |
-
output_states = layer_module(next_kv, attention_mask, query_states = query_states, relative_pos=relative_pos)
|
488 |
-
if return_att:
|
489 |
-
output_states, att_m = output_states
|
490 |
-
|
491 |
-
# if i == 0 and self.with_conv:
|
492 |
-
# prenorm = output_states #output['prenorm_states']
|
493 |
-
# output_states = self.conv(hidden_states, prenorm, input_mask)
|
494 |
-
|
495 |
-
if query_states is not None:
|
496 |
-
query_states = output_states
|
497 |
-
if isinstance(hidden_states, Sequence):
|
498 |
-
next_kv = hidden_states[i+1] if i+1 < len(self.layer) else None
|
499 |
-
else:
|
500 |
-
next_kv = output_states
|
501 |
-
|
502 |
-
if output_all_encoded_layers:
|
503 |
-
all_encoder_layers.append(output_states)
|
504 |
-
if return_att:
|
505 |
-
att_matrices.append(att_m)
|
506 |
-
if not output_all_encoded_layers:
|
507 |
-
all_encoder_layers.append(output_states)
|
508 |
-
if return_att:
|
509 |
-
att_matrices.append(att_m)
|
510 |
-
return {
|
511 |
-
'hidden_states': all_encoder_layers,
|
512 |
-
'attention_matrices': att_matrices
|
513 |
-
}
|
514 |
-
|
515 |
-
|
516 |
-
class GatModel(torch.nn.Module):
|
517 |
-
"""
|
518 |
-
Parameters:
|
519 |
-
config:
|
520 |
-
A model config class instance with the configuration to build a new model. The schema is similar to `BertConfig`,
|
521 |
-
|
522 |
-
pre_trained:
|
523 |
-
The pre-trained DeBERTa model, it can be a physical path of a pre-trained DeBERTa model or a released configurations,
|
524 |
-
i.e. [**base, large, base_mnli, large_mnli**]
|
525 |
-
|
526 |
-
"""
|
527 |
-
|
528 |
-
def __init__(self, config=None, pre_trained=None, pooler=False, shift_token=False, causal=False, **kwargs):
|
529 |
-
super().__init__()
|
530 |
-
state = None
|
531 |
-
if pre_trained is not None:
|
532 |
-
state, model_config = load_model_state(pre_trained)
|
533 |
-
if config is not None and model_config is not None:
|
534 |
-
for k in config.__dict__:
|
535 |
-
if k not in ['hidden_size',
|
536 |
-
'intermediate_size',
|
537 |
-
'num_attention_heads',
|
538 |
-
'num_hidden_layers',
|
539 |
-
'vocab_size',
|
540 |
-
'max_position_embeddings']:
|
541 |
-
model_config.__dict__[k] = config.__dict__[k]
|
542 |
-
config = copy.copy(model_config)
|
543 |
-
self.embeddings = GatEmbeddings(config, with_position=True)
|
544 |
-
self.encoder = GatEncoder(config, shift_token=shift_token)
|
545 |
-
if not pooler:
|
546 |
-
self.pooler = None
|
547 |
-
self.config = config
|
548 |
-
self.pre_trained = pre_trained
|
549 |
-
self.apply_state(state)
|
550 |
-
|
551 |
-
def get_attention_mask(self, input_ids=None, token_type_ids=None, attention_mask=None, input_mask=None):
|
552 |
-
if attention_mask is None:
|
553 |
-
if input_mask is not None:
|
554 |
-
return input_mask.unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), input_mask.size(1))
|
555 |
-
else:
|
556 |
-
return torch.ones_like(input_ids, dtype=torch.uint8).unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), input_mask.size(1))
|
557 |
-
else:
|
558 |
-
if attention_mask.dim() == 2:
|
559 |
-
if input_mask is not None:
|
560 |
-
attention_mask = attention_mask * input_mask
|
561 |
-
return attention_mask.unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), attention_mask.size(-1))
|
562 |
-
if attention_mask.dim() == 4:
|
563 |
-
attention_mask = attention_mask.squeeze(2)
|
564 |
-
if attention_mask.dim() == 3:
|
565 |
-
if input_mask is not None:
|
566 |
-
return attention_mask * input_mask.unsqueeze(-1).expand(input_mask.size(0), input_mask.size(1), attention_mask.size(-1))
|
567 |
-
else:
|
568 |
-
return attention_mask
|
569 |
-
|
570 |
-
|
571 |
-
def forward(self, input_ids, input_mask, attention_mask=None, token_type_ids=None,
|
572 |
-
output_all_encoded_layers=True, position_ids=None, return_att=False):
|
573 |
-
"""
|
574 |
-
Args:
|
575 |
-
input_ids:
|
576 |
-
a torch.LongTensor of shape [batch_size, sequence_length] \
|
577 |
-
with the word token indices in the vocabulary
|
578 |
-
|
579 |
-
attention_mask:
|
580 |
-
an optional parameter for input mask or attention mask.
|
581 |
-
|
582 |
-
- If it's an input mask, then it will be torch.LongTensor of shape [batch_size, sequence_length] with indices \
|
583 |
-
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
|
584 |
-
input sequence length in the current batch. It's the mask that we typically use for attention when \
|
585 |
-
a batch has varying length sentences.
|
586 |
-
|
587 |
-
- If it's an attention mask then it will be torch.LongTensor of shape [batch_size, sequence_length, sequence_length]. \
|
588 |
-
In this case, it's a mask indicate which tokens in the sequence should be attended by other tokens in the sequence.
|
589 |
-
|
590 |
-
token_type_ids:
|
591 |
-
an optional torch.LongTensor of shape [batch_size, sequence_length] with the token \
|
592 |
-
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
|
593 |
-
a `sentence B` token (see BERT paper for more details).
|
594 |
-
|
595 |
-
output_all_encoded_layers:
|
596 |
-
whether to output results of all encoder layers, default, True
|
597 |
-
|
598 |
-
Returns:
|
599 |
-
|
600 |
-
- The output of the stacked transformer layers if `output_all_encoded_layers=True`, else \
|
601 |
-
the last layer of stacked transformer layers
|
602 |
-
|
603 |
-
- Attention matrix of self-attention layers if `return_att=True`
|
604 |
-
|
605 |
-
|
606 |
-
Example::
|
607 |
-
|
608 |
-
# Batch of wordPiece token ids.
|
609 |
-
# Each sample was padded with zero to the maxium length of the batch
|
610 |
-
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
611 |
-
# Mask of valid input ids
|
612 |
-
attention_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
613 |
-
|
614 |
-
# DeBERTa model initialized with pretrained base model
|
615 |
-
bert = DeBERTa(pre_trained='base')
|
616 |
-
|
617 |
-
encoder_layers = bert(input_ids, attention_mask=attention_mask)
|
618 |
-
|
619 |
-
"""
|
620 |
-
if token_type_ids is None:
|
621 |
-
token_type_ids = torch.zeros_like(input_ids)
|
622 |
-
# input_mask = torch.ones_like(input_ids)
|
623 |
-
|
624 |
-
if input_mask is None:
|
625 |
-
idxs = torch.flip(torch.cumsum(torch.flip(token_type_ids, [-1]), axis=1), [-1])
|
626 |
-
input_mask = idxs > 0
|
627 |
-
if not torch.any(input_mask):
|
628 |
-
input_mask = torch.ones_like(input_ids)
|
629 |
-
input_mask = input_mask.byte()
|
630 |
-
attention_mask = self.get_attention_mask(input_ids, token_type_ids, attention_mask, input_mask)
|
631 |
-
attention_mask = attention_mask.byte()
|
632 |
-
embedding_output = self.embeddings(input_ids.to(torch.long), token_type_ids.to(torch.long), position_ids, input_mask)
|
633 |
-
encoder_output = self.encoder(embedding_output['embeddings'], attention_mask, output_all_encoded_layers=output_all_encoded_layers, return_att = return_att)
|
634 |
-
encoder_output.update(embedding_output)
|
635 |
-
return encoder_output
|
636 |
-
|
637 |
-
def apply_state(self, state = None):
|
638 |
-
""" Load state from previous loaded model state dictionary.
|
639 |
-
|
640 |
-
Args:
|
641 |
-
state (:obj:`dict`, optional): State dictionary as the state returned by torch.module.state_dict(), default: `None`. \
|
642 |
-
If it's `None`, then will use the pre-trained state loaded via the constructor to re-initialize \
|
643 |
-
the `DeBERTa` model
|
644 |
-
"""
|
645 |
-
if self.pre_trained is None and state is None:
|
646 |
-
return
|
647 |
-
if state is None:
|
648 |
-
state, config = load_model_state(self.pre_trained)
|
649 |
-
self.config = config
|
650 |
-
|
651 |
-
prefix = ''
|
652 |
-
for k in state:
|
653 |
-
if 'embeddings.' in k:
|
654 |
-
if not k.startswith('embeddings.'):
|
655 |
-
prefix = k[:k.index('embeddings.')]
|
656 |
-
break
|
657 |
-
|
658 |
-
missing_keys = []
|
659 |
-
unexpected_keys = []
|
660 |
-
error_msgs = []
|
661 |
-
self._load_from_state_dict(state, prefix = prefix, local_metadata=None, strict=True, missing_keys=missing_keys, unexpected_keys=unexpected_keys, error_msgs=error_msgs)
|
662 |
-
|
663 |
-
|
664 |
-
if __name__ == '__main__':
|
665 |
-
model = GatModel(768, 64)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling/mlm.py
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
2 |
-
# Copyright (c) Microsoft, Inc. 2020
|
3 |
-
#
|
4 |
-
# This source code is licensed under the MIT license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
# This piece of code is modified based on https://github.com/huggingface/transformers
|
8 |
-
|
9 |
-
import torch
|
10 |
-
from torch import nn
|
11 |
-
import pdb
|
12 |
-
|
13 |
-
from .bert import LayerNorm,ACT2FN
|
14 |
-
|
15 |
-
__all__ = ['MLMPredictionHead']
|
16 |
-
|
17 |
-
class MLMPredictionHead(nn.Module):
|
18 |
-
def __init__(self, config, vocab_size):
|
19 |
-
super().__init__()
|
20 |
-
self.embedding_size = getattr(config, 'embedding_size', config.hidden_size)
|
21 |
-
self.dense = nn.Linear(config.hidden_size, self.embedding_size)
|
22 |
-
self.transform_act_fn = ACT2FN[config.hidden_act] \
|
23 |
-
if isinstance(config.hidden_act, str) else config.hidden_act
|
24 |
-
|
25 |
-
self.LayerNorm = LayerNorm(self.embedding_size, config.layer_norm_eps)
|
26 |
-
self.bias = nn.Parameter(torch.zeros(vocab_size))
|
27 |
-
self.pre_norm = PreLayerNorm(config)
|
28 |
-
|
29 |
-
def forward(self, hidden_states, embeding_weight):
|
30 |
-
hidden_states = self.pre_norm(hidden_states)
|
31 |
-
hidden_states = self.dense(hidden_states)
|
32 |
-
hidden_states = self.transform_act_fn(hidden_states)
|
33 |
-
# b x s x d
|
34 |
-
hidden_states = MaskedLayerNorm(self.LayerNorm, hidden_states)
|
35 |
-
|
36 |
-
# b x s x v
|
37 |
-
logits = torch.matmul(hidden_states, embeding_weight.t().to(hidden_states)) + self.bias
|
38 |
-
return logits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling/modeling.py
DELETED
The diff for this file is too large to render.
See raw diff
|
|
modeling/nnmodule.py
DELETED
@@ -1,184 +0,0 @@
|
|
1 |
-
import pdb
|
2 |
-
import os
|
3 |
-
import torch
|
4 |
-
import copy
|
5 |
-
from torch import nn, tensor
|
6 |
-
from .config import ModelConfig
|
7 |
-
from ..utils import xtqdm as tqdm
|
8 |
-
from .cache_utils import load_model_state
|
9 |
-
from .flash import GAULinear
|
10 |
-
|
11 |
-
from ..utils import get_logger
|
12 |
-
logger = get_logger()
|
13 |
-
|
14 |
-
__all__ = ['NNModule']
|
15 |
-
|
16 |
-
def truncated_normal_(shape, mean=0, std=0.09):
|
17 |
-
with torch.no_grad():
|
18 |
-
tensor = torch.zeros(shape)
|
19 |
-
tmp = tensor.new_empty(shape + (4,)).normal_()
|
20 |
-
valid = (tmp < 2) & (tmp > -2)
|
21 |
-
ind = valid.max(-1, keepdim=True)[1]
|
22 |
-
tensor.data.copy_(tmp.gather(-1, ind).squeeze(-1))
|
23 |
-
tensor.data.mul_(std).add_(mean)
|
24 |
-
return tensor
|
25 |
-
|
26 |
-
class NNModule(nn.Module):
|
27 |
-
""" An abstract class to handle weights initialization and \
|
28 |
-
a simple interface for dowloading and loading pretrained models.
|
29 |
-
|
30 |
-
Args:
|
31 |
-
|
32 |
-
config (:obj:`~DeBERTa.deberta.ModelConfig`): The model config to the module
|
33 |
-
|
34 |
-
"""
|
35 |
-
|
36 |
-
def __init__(self, config, *inputs, **kwargs):
|
37 |
-
super().__init__()
|
38 |
-
self.config = config
|
39 |
-
|
40 |
-
def init_weights(self, module):
|
41 |
-
""" Apply Gaussian(mean=0, std=`config.initializer_range`) initialization to the module.
|
42 |
-
|
43 |
-
Args:
|
44 |
-
|
45 |
-
module (:obj:`torch.nn.Module`): The module to apply the initialization.
|
46 |
-
|
47 |
-
Example::
|
48 |
-
|
49 |
-
class MyModule(NNModule):
|
50 |
-
def __init__(self, config):
|
51 |
-
# Add construction instructions
|
52 |
-
self.bert = DeBERTa(config)
|
53 |
-
|
54 |
-
# Add other modules
|
55 |
-
...
|
56 |
-
|
57 |
-
# Apply initialization
|
58 |
-
self.apply(self.init_weights)
|
59 |
-
|
60 |
-
"""
|
61 |
-
if isinstance(module, (nn.Linear, nn.Embedding)):
|
62 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
63 |
-
if isinstance(module, nn.Linear) and module.bias is not None:
|
64 |
-
module.bias.data.zero_()
|
65 |
-
|
66 |
-
def init_weights_gau(self, module):
|
67 |
-
""" Apply Gaussian(mean=0, std=`config.initializer_range`) initialization to the module.
|
68 |
-
|
69 |
-
Args:
|
70 |
-
|
71 |
-
module (:obj:`torch.nn.Module`): The module to apply the initialization.
|
72 |
-
|
73 |
-
Example::
|
74 |
-
|
75 |
-
class MyModule(NNModule):
|
76 |
-
def __init__(self, config):
|
77 |
-
# Add construction instructions
|
78 |
-
self.bert = DeBERTa(config)
|
79 |
-
|
80 |
-
# Add other modules
|
81 |
-
...
|
82 |
-
|
83 |
-
# Apply initialization
|
84 |
-
self.apply(self.init_weights)
|
85 |
-
|
86 |
-
"""
|
87 |
-
if isinstance(module, GAULinear):
|
88 |
-
module.init_weight()
|
89 |
-
else:
|
90 |
-
if isinstance(module, (nn.Linear, nn.Embedding)):
|
91 |
-
# module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
92 |
-
module.weight.data.copy_(self.initializer(module.weight.data.shape))
|
93 |
-
if isinstance(module, nn.Linear) and module.bias is not None:
|
94 |
-
module.bias.data.zero_()
|
95 |
-
|
96 |
-
def initializer(self, shape, dtype=None, order=3, gain=1.0):
|
97 |
-
if shape[1] > 10000 or shape[1] < 10:
|
98 |
-
hidden_size = shape[0]
|
99 |
-
else:
|
100 |
-
hidden_size = shape[1]
|
101 |
-
gain *= self.config.num_hidden_layers ** (-1.0 / order)
|
102 |
-
stddev = 1.13684723 / hidden_size**0.5 * gain
|
103 |
-
return torch.nn.init.trunc_normal_(torch.empty(shape, dtype=dtype), std=stddev)# truncated_normal_(shape, std=stddev)
|
104 |
-
|
105 |
-
@classmethod
|
106 |
-
def load_model(cls, model_path, model_config=None, tag=None, no_cache=False, cache_dir=None , *inputs, **kwargs):
|
107 |
-
""" Instantiate a sub-class of NNModule from a pre-trained model file.
|
108 |
-
|
109 |
-
Args:
|
110 |
-
|
111 |
-
model_path (:obj:`str`): Path or name of the pre-trained model which can be either,
|
112 |
-
|
113 |
-
- The path of pre-trained model
|
114 |
-
|
115 |
-
- The pre-trained DeBERTa model name in `DeBERTa GitHub releases <https://github.com/microsoft/DeBERTa/releases>`_, i.e. [**base, base_mnli, large, large_mnli**].
|
116 |
-
|
117 |
-
If `model_path` is `None` or `-`, then the method will create a new sub-class without initialing from pre-trained models.
|
118 |
-
|
119 |
-
model_config (:obj:`str`): The path of model config file. If it's `None`, then the method will try to find the the config in order:
|
120 |
-
|
121 |
-
1. ['config'] in the model state dictionary.
|
122 |
-
|
123 |
-
2. `model_config.json` aside the `model_path`.
|
124 |
-
|
125 |
-
If it failed to find a config the method will fail.
|
126 |
-
|
127 |
-
tag (:obj:`str`, optional): The release tag of DeBERTa, default: `None`.
|
128 |
-
|
129 |
-
no_cache (:obj:`bool`, optional): Disable local cache of downloaded models, default: `False`.
|
130 |
-
|
131 |
-
cache_dir (:obj:`str`, optional): The cache directory used to save the downloaded models, default: `None`. If it's `None`, then the models will be saved at `$HOME/.~DeBERTa`
|
132 |
-
|
133 |
-
Return:
|
134 |
-
|
135 |
-
:obj:`NNModule` : The sub-class object.
|
136 |
-
|
137 |
-
"""
|
138 |
-
# Load config
|
139 |
-
if model_config:
|
140 |
-
config = ModelConfig.from_json_file(model_config)
|
141 |
-
else:
|
142 |
-
config = None
|
143 |
-
model_config = None
|
144 |
-
model_state = None
|
145 |
-
if (model_path is not None) and (model_path.strip() == '-' or model_path.strip()==''):
|
146 |
-
model_path = None
|
147 |
-
try:
|
148 |
-
model_state, model_config = load_model_state(model_path, tag=tag, no_cache=no_cache, cache_dir=cache_dir)
|
149 |
-
except Exception as exp:
|
150 |
-
raise Exception(f'Failed to get model {model_path}. Exception: {exp}')
|
151 |
-
|
152 |
-
if config is not None and model_config is not None:
|
153 |
-
for k in config.__dict__:
|
154 |
-
if k not in ['hidden_size',
|
155 |
-
'intermediate_size',
|
156 |
-
'num_attention_heads',
|
157 |
-
'num_hidden_layers',
|
158 |
-
'vocab_size',
|
159 |
-
'max_position_embeddings'] or (k not in model_config.__dict__) or (model_config.__dict__[k] < 0):
|
160 |
-
model_config.__dict__[k] = config.__dict__[k]
|
161 |
-
if model_config is not None:
|
162 |
-
config = copy.copy(model_config)
|
163 |
-
vocab_size = config.vocab_size
|
164 |
-
# Instantiate model.
|
165 |
-
model = cls(config, *inputs, **kwargs)
|
166 |
-
if not model_state:
|
167 |
-
return model
|
168 |
-
# copy state_dict so _load_from_state_dict can modify it
|
169 |
-
state_dict = model_state.copy()
|
170 |
-
|
171 |
-
missing_keys = []
|
172 |
-
unexpected_keys = []
|
173 |
-
error_msgs = []
|
174 |
-
metadata = getattr(state_dict, '_metadata', None)
|
175 |
-
def load(module, prefix=''):
|
176 |
-
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
177 |
-
module._load_from_state_dict(
|
178 |
-
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
|
179 |
-
for name, child in module._modules.items():
|
180 |
-
if child is not None:
|
181 |
-
load(child, prefix + name + '.')
|
182 |
-
load(model)
|
183 |
-
logger.warning(f'Missing keys: {missing_keys}, unexpected_keys: {unexpected_keys}, error_msgs: {error_msgs}')
|
184 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling/ops.py
CHANGED
@@ -7,12 +7,10 @@
|
|
7 |
# Date: 01/15/2020
|
8 |
#
|
9 |
|
10 |
-
import pdb
|
11 |
import math
|
12 |
from packaging import version
|
13 |
import torch
|
14 |
from torch.nn import LayerNorm
|
15 |
-
from wywLM.utils.jit_tracing import traceable
|
16 |
|
17 |
if version.Version(torch.__version__) >= version.Version('1.0.0'):
|
18 |
from torch import _softmax_backward_data as _softmax_backward_data
|
@@ -21,7 +19,7 @@ else:
|
|
21 |
|
22 |
__all__ = ['StableDropout', 'MaskedLayerNorm', 'XSoftmax', 'ACT2FN', 'LayerNorm']
|
23 |
|
24 |
-
|
25 |
class XSoftmax(torch.autograd.Function):
|
26 |
""" Masked Softmax which is optimized for saving memory
|
27 |
|
@@ -113,7 +111,7 @@ def get_mask(input, local_context):
|
|
113 |
|
114 |
return mask, dropout
|
115 |
|
116 |
-
|
117 |
class XDropout(torch.autograd.Function):
|
118 |
@staticmethod
|
119 |
def forward(ctx, input, local_ctx):
|
|
|
7 |
# Date: 01/15/2020
|
8 |
#
|
9 |
|
|
|
10 |
import math
|
11 |
from packaging import version
|
12 |
import torch
|
13 |
from torch.nn import LayerNorm
|
|
|
14 |
|
15 |
if version.Version(torch.__version__) >= version.Version('1.0.0'):
|
16 |
from torch import _softmax_backward_data as _softmax_backward_data
|
|
|
19 |
|
20 |
__all__ = ['StableDropout', 'MaskedLayerNorm', 'XSoftmax', 'ACT2FN', 'LayerNorm']
|
21 |
|
22 |
+
|
23 |
class XSoftmax(torch.autograd.Function):
|
24 |
""" Masked Softmax which is optimized for saving memory
|
25 |
|
|
|
111 |
|
112 |
return mask, dropout
|
113 |
|
114 |
+
|
115 |
class XDropout(torch.autograd.Function):
|
116 |
@staticmethod
|
117 |
def forward(ctx, input, local_ctx):
|
modeling/pretrained_models.py
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
modeling/wywlm_modeling.py
DELETED
@@ -1,446 +0,0 @@
|
|
1 |
-
# Copyright (c) Microsoft, Inc. 2020
|
2 |
-
#
|
3 |
-
# This source code is licensed under the MIT license found in the
|
4 |
-
# LICENSE file in the root directory of this source tree.
|
5 |
-
#
|
6 |
-
# Zhou Bo
|
7 |
-
# Date: 01/15/2020
|
8 |
-
#
|
9 |
-
|
10 |
-
import copy
|
11 |
-
import torch
|
12 |
-
import os
|
13 |
-
import random
|
14 |
-
|
15 |
-
import json
|
16 |
-
from .ops import *
|
17 |
-
from .bert import *
|
18 |
-
from .bert import BertLayer
|
19 |
-
from .config import ModelConfig
|
20 |
-
from .cache_utils import load_model_state
|
21 |
-
from .nnmodule import NNModule
|
22 |
-
|
23 |
-
# from ..utils.bad_grad_viz import register_hooks
|
24 |
-
|
25 |
-
__all__ = ['WywLM']
|
26 |
-
|
27 |
-
def flatten_states(q_states, mask_index):
|
28 |
-
q_states = q_states.reshape((-1, q_states.size(-1)))
|
29 |
-
q_states = q_states.index_select(0, mask_index)
|
30 |
-
return q_states
|
31 |
-
|
32 |
-
|
33 |
-
class UGDecoder(torch.nn.Module):
|
34 |
-
def __init__(self, config, vocab_size):
|
35 |
-
super().__init__()
|
36 |
-
self.config = config
|
37 |
-
self.position_biased_input = getattr(config, 'position_biased_input', True)
|
38 |
-
# self.layer = torch.nn.ModuleList([BertLayer(config) for _ in range(2)])
|
39 |
-
|
40 |
-
# self.causal_mask = torch.tril(torch.ones((input_ids.dim(0), input_ids.dim(1), input_ids.dim(1))), diagonal=0)
|
41 |
-
|
42 |
-
def forward(self, ctx_layers, word_embedding, input_ids, z_states, attention_mask, \
|
43 |
-
encoder, target_ids=None, relative_pos=None, decode=False, s2s_idx=None):
|
44 |
-
causal_outputs, lm_outputs = self.emd_context_layer(ctx_layers, z_states, attention_mask,
|
45 |
-
encoder, target_ids, input_ids,
|
46 |
-
relative_pos=relative_pos, decode=decode,
|
47 |
-
word_embedding=word_embedding, s2s_idx=s2s_idx)
|
48 |
-
# loss_fct = torch.nn.CrossEntropyLoss(reduction='none')
|
49 |
-
|
50 |
-
# ctx_layer = mlm_ctx_layers[-1]
|
51 |
-
|
52 |
-
# lm_logits = lm_logits.view(-1, lm_logits.size(-1))
|
53 |
-
|
54 |
-
return causal_outputs[-1], lm_outputs[-1]
|
55 |
-
|
56 |
-
def emd_context_layer(self, encoder_layers, z_states, attention_mask, encoder, target_ids, input_ids,\
|
57 |
-
relative_pos=None, decode=False, word_embedding=None, s2s_idx=None):
|
58 |
-
# if decode:
|
59 |
-
# attention_mask = torch.tril(torch.ones((input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])), diagonal=0).to(input_ids.device)
|
60 |
-
# else:
|
61 |
-
if attention_mask.dim()<=2:
|
62 |
-
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
63 |
-
att_mask = extended_attention_mask.byte()
|
64 |
-
attention_mask = att_mask*att_mask.squeeze(-2).unsqueeze(-1)
|
65 |
-
elif attention_mask.dim()==3:
|
66 |
-
attention_mask = attention_mask.unsqueeze(1)
|
67 |
-
|
68 |
-
|
69 |
-
if not self.position_biased_input:
|
70 |
-
|
71 |
-
|
72 |
-
lm_outputs = []
|
73 |
-
# else:
|
74 |
-
hidden_states = encoder_layers[-2]
|
75 |
-
layers = [encoder.layer[-1] for _ in range(2)]
|
76 |
-
z_states += hidden_states
|
77 |
-
query_states = z_states
|
78 |
-
query_mask = attention_mask
|
79 |
-
rel_embeddings = encoder.get_rel_embedding()
|
80 |
-
for layer in layers:
|
81 |
-
# TODO: pass relative pos ids
|
82 |
-
output = layer(hidden_states, query_mask, return_att=False,
|
83 |
-
query_states=query_states, relative_pos=relative_pos,
|
84 |
-
rel_embeddings=rel_embeddings)
|
85 |
-
query_states = output
|
86 |
-
lm_outputs.append(query_states)
|
87 |
-
|
88 |
-
# if decode:
|
89 |
-
attention_mask = torch.tril(torch.ones((input_ids.shape[0], 1, input_ids.shape[1], input_ids.shape[1])),
|
90 |
-
diagonal=0).to(input_ids.device)
|
91 |
-
causal_outputs = []
|
92 |
-
# with torch.no_grad():
|
93 |
-
target_embd = word_embedding(target_ids)
|
94 |
-
|
95 |
-
target_embd += z_states.detach()
|
96 |
-
# self attention of target
|
97 |
-
output = layers[-2](target_embd, attention_mask, return_att=False,
|
98 |
-
query_states=target_embd, relative_pos=relative_pos,
|
99 |
-
rel_embeddings=encoder.get_rel_embedding())
|
100 |
-
causal_outputs.append(output)
|
101 |
-
# cross attention
|
102 |
-
output = layers[-1](output, attention_mask, return_att=False,
|
103 |
-
query_states=query_states, relative_pos=relative_pos,
|
104 |
-
rel_embeddings=encoder.get_rel_embedding())
|
105 |
-
causal_outputs.append(output)
|
106 |
-
|
107 |
-
else:
|
108 |
-
causal_outputs = [encoder_layers[-1]]
|
109 |
-
lm_outputs = [encoder_layers[-1]]
|
110 |
-
return causal_outputs, lm_outputs
|
111 |
-
|
112 |
-
|
113 |
-
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
114 |
-
"""
|
115 |
-
Shift input ids one token to the right.
|
116 |
-
"""
|
117 |
-
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
118 |
-
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
119 |
-
shifted_input_ids[:, 0] = decoder_start_token_id
|
120 |
-
|
121 |
-
if pad_token_id is None:
|
122 |
-
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
123 |
-
# replace possible -100 values in labels by `pad_token_id`
|
124 |
-
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
125 |
-
|
126 |
-
return shifted_input_ids
|
127 |
-
|
128 |
-
|
129 |
-
class WywLMLoss(torch.nn.Module):
|
130 |
-
def __init__(self, config) -> None:
|
131 |
-
super().__init__()
|
132 |
-
self.loss_fn = torch.nn.CrossEntropyLoss(reduction='mean')
|
133 |
-
hidden_size = getattr(config, 'embedding_size', config.hidden_size)
|
134 |
-
self.compare = torch.nn.Linear(hidden_size * 3, 2)
|
135 |
-
# self.mlm_head = BertLMPredictionHead(config, config.vocab_size)
|
136 |
-
self.lm_head = BertLMPredictionHead(config, config.vocab_size)
|
137 |
-
|
138 |
-
def forward(self, logits, lm_logits, target_ids, dict_pos, input_ids, target_ids_s2s, decode=False, ebd_weight=None, task=0):
|
139 |
-
loss_compare = torch.tensor(0).to(logits).float()
|
140 |
-
mlm_loss = torch.tensor(0).to(logits).float()
|
141 |
-
lm_loss = torch.tensor(0).to(logits).float()
|
142 |
-
|
143 |
-
# else:
|
144 |
-
if task == 1:
|
145 |
-
compare_logits = []
|
146 |
-
compare_labels = []
|
147 |
-
for bi, sampel_pos in enumerate(dict_pos):
|
148 |
-
num_pos = int((sampel_pos > 0).sum().detach().cpu().numpy() / 4) - 1
|
149 |
-
if num_pos <= 1:
|
150 |
-
continue
|
151 |
-
for pi in range(num_pos):
|
152 |
-
pos = sampel_pos[pi]
|
153 |
-
entry_logits = logits[bi][pos[0]: pos[1]]
|
154 |
-
desc_logits = logits[bi][pos[2]: pos[3]]
|
155 |
-
neg_num = random.randint(0, num_pos) # torch.randint(low=0, high=num_pos, size=(1,))
|
156 |
-
ids_neg = input_ids[bi][sampel_pos[neg_num][0]: sampel_pos[neg_num][1]]
|
157 |
-
ids_pos = input_ids[bi][pos[0]: pos[1]]
|
158 |
-
if neg_num == pi or (ids_neg.shape == ids_pos.shape and torch.all(ids_neg == ids_pos)):
|
159 |
-
neg_num = -1
|
160 |
-
for ni in range(num_pos):
|
161 |
-
neg_num = random.randint(0, num_pos)# torch.randint(low=0, high=num_pos, size=(1,))
|
162 |
-
ids_neg = input_ids[bi][sampel_pos[neg_num][0]: sampel_pos[neg_num][1]]
|
163 |
-
if neg_num != pi and (ids_neg.shape != ids_pos.shape or not torch.all(ids_neg == ids_pos)):
|
164 |
-
break
|
165 |
-
else:
|
166 |
-
neg_num = -1
|
167 |
-
if neg_num == -1:
|
168 |
-
continue
|
169 |
-
neg_desc_logits = logits[bi][sampel_pos[neg_num][2]: sampel_pos[neg_num][3]]
|
170 |
-
if torch.any(torch.isnan(neg_desc_logits)):
|
171 |
-
print('error')
|
172 |
-
entry_logits = entry_logits.mean(dim=0, keepdim=True).float()
|
173 |
-
desc_logits = desc_logits.mean(dim=0, keepdim=True).float()
|
174 |
-
neg_desc_logits = neg_desc_logits.mean(dim=0, keepdim=True).float()
|
175 |
-
compare_logits.append(torch.concat([entry_logits, desc_logits, entry_logits - desc_logits], dim=1))
|
176 |
-
compare_logits.append(torch.concat([entry_logits, neg_desc_logits, entry_logits - neg_desc_logits], dim=1))
|
177 |
-
compare_labels += [1, 0]
|
178 |
-
if len(compare_logits) > 0:
|
179 |
-
compare_logits = torch.concat(compare_logits, dim=0).to(logits.dtype)
|
180 |
-
compare_pred = self.compare(compare_logits)
|
181 |
-
loss_compare = self.loss_fn(compare_pred, torch.tensor(compare_labels, dtype=torch.long, device=compare_logits.device)).mean()
|
182 |
-
|
183 |
-
if torch.all(loss_compare == 0):
|
184 |
-
entry_logits = logits[0][0].unsqueeze(0)
|
185 |
-
compare_logits = torch.concat([entry_logits, entry_logits, entry_logits - entry_logits], dim=1)
|
186 |
-
compare_pred = self.compare(compare_logits)
|
187 |
-
compare_labels = [1]
|
188 |
-
loss_compare = self.loss_fn(compare_pred, torch.tensor(compare_labels, dtype=torch.long, device=compare_logits.device)).mean()
|
189 |
-
|
190 |
-
# if decode:
|
191 |
-
# lm_labels = target_ids_s2s.index_select(0, (target_ids_s2s.sum(-1) > 0).nonzero().view(-1)[0])
|
192 |
-
# lm_labels = lm_labels.repeat(logits.shape[0], 1).clone().view(-1)
|
193 |
-
# lm_labels = target_ids_s2s.clone()
|
194 |
-
# target_ids_s2s = shift_tokens_right(target_ids_s2s, 0, 1)
|
195 |
-
# target_ids_s2s.masked_fill_(target_ids_s2s==0, 3)
|
196 |
-
if task == 0:
|
197 |
-
_mask_index = (target_ids_s2s > 0).view(-1).nonzero().view(-1)
|
198 |
-
lm_logits_ = flatten_states(lm_logits, _mask_index)
|
199 |
-
lm_pred = self.lm_head(lm_logits_, ebd_weight).float()
|
200 |
-
lm_labels = target_ids_s2s.clone().reshape(-1)
|
201 |
-
lm_labels = lm_labels.index_select(0, _mask_index)
|
202 |
-
# lm_pred = torch.nn.functional.log_softmax(lm_pred)
|
203 |
-
# lm_loss = torch.nn.functional.nll_loss(lm_pred, lm_labels.long())
|
204 |
-
lm_loss = self.loss_fn(lm_pred, lm_labels.long())
|
205 |
-
# dot = register_hooks(lm_loss)
|
206 |
-
# lm_loss.backward()
|
207 |
-
# dot().save('tmp.dot')
|
208 |
-
|
209 |
-
|
210 |
-
_mask_index = (target_ids > 0).view(-1).nonzero().view(-1)
|
211 |
-
mlm_logits = flatten_states(logits, _mask_index)
|
212 |
-
mlm_pred = self.lm_head(mlm_logits, ebd_weight).float()
|
213 |
-
mlm_labels = target_ids.view(-1)
|
214 |
-
mlm_labels = mlm_labels.index_select(0, _mask_index)
|
215 |
-
mlm_loss = self.loss_fn(mlm_pred, mlm_labels.long())
|
216 |
-
return loss_compare, mlm_loss, lm_loss
|
217 |
-
|
218 |
-
class WywLM(torch.nn.Module):
|
219 |
-
""" DeBERTa encoder
|
220 |
-
This module is composed of the input embedding layer with stacked transformer layers with disentangled attention.
|
221 |
-
|
222 |
-
Parameters:
|
223 |
-
config:
|
224 |
-
A model config class instance with the configuration to build a new model. The schema is similar to `BertConfig`, \
|
225 |
-
for more details, please refer :class:`~DeBERTa.deberta.ModelConfig`
|
226 |
-
|
227 |
-
pre_trained:
|
228 |
-
The pre-trained DeBERTa model, it can be a physical path of a pre-trained DeBERTa model or a released configurations, \
|
229 |
-
i.e. [**base, large, base_mnli, large_mnli**]
|
230 |
-
|
231 |
-
"""
|
232 |
-
|
233 |
-
def __init__(self, config=None, pre_trained=None):
|
234 |
-
super().__init__()
|
235 |
-
state = None
|
236 |
-
if pre_trained is not None:
|
237 |
-
state, model_config = load_model_state(pre_trained)
|
238 |
-
if config is not None and model_config is not None:
|
239 |
-
for k in config.__dict__:
|
240 |
-
if k not in ['hidden_size',
|
241 |
-
'intermediate_size',
|
242 |
-
'num_attention_heads',
|
243 |
-
'num_hidden_layers',
|
244 |
-
'vocab_size',
|
245 |
-
'max_position_embeddings']:
|
246 |
-
model_config.__dict__[k] = config.__dict__[k]
|
247 |
-
config = copy.copy(model_config)
|
248 |
-
self.embeddings = BertEmbeddings(config)
|
249 |
-
self.encoder = BertEncoder(config)
|
250 |
-
self.config = config
|
251 |
-
self.pre_trained = pre_trained
|
252 |
-
self.apply_state(state)
|
253 |
-
|
254 |
-
def forward(self, input_ids, attention_mask=None, token_type_ids=None, output_all_encoded_layers=True, position_ids = None, return_att = False):
|
255 |
-
"""
|
256 |
-
Args:
|
257 |
-
input_ids:
|
258 |
-
a torch.LongTensor of shape [batch_size, sequence_length] \
|
259 |
-
with the word token indices in the vocabulary
|
260 |
-
|
261 |
-
attention_mask:
|
262 |
-
an optional parameter for input mask or attention mask.
|
263 |
-
|
264 |
-
- If it's an input mask, then it will be torch.LongTensor of shape [batch_size, sequence_length] with indices \
|
265 |
-
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max \
|
266 |
-
input sequence length in the current batch. It's the mask that we typically use for attention when \
|
267 |
-
a batch has varying length sentences.
|
268 |
-
|
269 |
-
- If it's an attention mask then it will be torch.LongTensor of shape [batch_size, sequence_length, sequence_length]. \
|
270 |
-
In this case, it's a mask indicate which tokens in the sequence should be attended by other tokens in the sequence.
|
271 |
-
|
272 |
-
token_type_ids:
|
273 |
-
an optional torch.LongTensor of shape [batch_size, sequence_length] with the token \
|
274 |
-
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to \
|
275 |
-
a `sentence B` token (see BERT paper for more details).
|
276 |
-
|
277 |
-
output_all_encoded_layers:
|
278 |
-
whether to output results of all encoder layers, default, True
|
279 |
-
|
280 |
-
Returns:
|
281 |
-
|
282 |
-
- The output of the stacked transformer layers if `output_all_encoded_layers=True`, else \
|
283 |
-
the last layer of stacked transformer layers
|
284 |
-
|
285 |
-
- Attention matrix of self-attention layers if `return_att=True`
|
286 |
-
|
287 |
-
|
288 |
-
Example::
|
289 |
-
|
290 |
-
# Batch of wordPiece token ids.
|
291 |
-
# Each sample was padded with zero to the maxium length of the batch
|
292 |
-
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
|
293 |
-
# Mask of valid input ids
|
294 |
-
attention_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
|
295 |
-
|
296 |
-
# DeBERTa model initialized with pretrained base model
|
297 |
-
bert = DeBERTa(pre_trained='base')
|
298 |
-
|
299 |
-
encoder_layers = bert(input_ids, attention_mask=attention_mask)
|
300 |
-
|
301 |
-
"""
|
302 |
-
|
303 |
-
if attention_mask is None:
|
304 |
-
attention_mask = torch.ones_like(input_ids)
|
305 |
-
if token_type_ids is None:
|
306 |
-
token_type_ids = torch.zeros_like(input_ids)
|
307 |
-
token_mask = torch.ones_like(input_ids)
|
308 |
-
else:
|
309 |
-
idxs = torch.flip(torch.cumsum(torch.flip(token_type_ids, [-1]), axis=1), [-1])
|
310 |
-
token_mask = idxs > 0
|
311 |
-
token_mask = token_mask.byte()
|
312 |
-
ebd_output = self.embeddings(input_ids.to(torch.long), token_type_ids.to(torch.long), position_ids, token_mask)
|
313 |
-
embedding_output = ebd_output['embeddings']
|
314 |
-
encoder_output = self.encoder(embedding_output,
|
315 |
-
attention_mask,
|
316 |
-
output_all_encoded_layers=output_all_encoded_layers, return_att = return_att)
|
317 |
-
encoder_output.update(ebd_output)
|
318 |
-
return encoder_output
|
319 |
-
|
320 |
-
def apply_state(self, state = None):
|
321 |
-
""" Load state from previous loaded model state dictionary.
|
322 |
-
|
323 |
-
Args:
|
324 |
-
state (:obj:`dict`, optional): State dictionary as the state returned by torch.module.state_dict(), default: `None`. \
|
325 |
-
If it's `None`, then will use the pre-trained state loaded via the constructor to re-initialize \
|
326 |
-
the `DeBERTa` model
|
327 |
-
"""
|
328 |
-
if self.pre_trained is None and state is None:
|
329 |
-
return
|
330 |
-
if state is None:
|
331 |
-
state, config = load_model_state(self.pre_trained)
|
332 |
-
self.config = config
|
333 |
-
|
334 |
-
prefix = ''
|
335 |
-
for k in state:
|
336 |
-
if 'embeddings.' in k:
|
337 |
-
if not k.startswith('embeddings.'):
|
338 |
-
prefix = k[:k.index('embeddings.')]
|
339 |
-
break
|
340 |
-
|
341 |
-
missing_keys = []
|
342 |
-
unexpected_keys = []
|
343 |
-
error_msgs = []
|
344 |
-
self._load_from_state_dict(state, prefix = prefix, local_metadata=None, strict=True, missing_keys=missing_keys, unexpected_keys=unexpected_keys, error_msgs=error_msgs)
|
345 |
-
|
346 |
-
|
347 |
-
class MaskedLanguageModel(NNModule):
|
348 |
-
""" Masked language model
|
349 |
-
"""
|
350 |
-
def __init__(self, config, *wargs, **kwargs):
|
351 |
-
super().__init__(config)
|
352 |
-
self.backbone = WywLM(config)
|
353 |
-
|
354 |
-
self.max_relative_positions = getattr(config, 'max_relative_positions', -1)
|
355 |
-
self.position_buckets = getattr(config, 'position_buckets', -1)
|
356 |
-
if self.max_relative_positions <1:
|
357 |
-
self.max_relative_positions = config.max_position_embeddings
|
358 |
-
# self.mlm_predictions = UGDecoder(self.backbone.config, self.backbone.embeddings.word_embeddings.weight.size(0))
|
359 |
-
self.lm_predictions = UGDecoder(self.backbone.config, self.backbone.embeddings.word_embeddings.weight.size(0))
|
360 |
-
self.device = None
|
361 |
-
self.loss = WywLMLoss(config)
|
362 |
-
# self.loss_lm = WywLMLoss(config)
|
363 |
-
self.apply(self.init_weights)
|
364 |
-
|
365 |
-
def forward(self, samples, position_ids=None):
|
366 |
-
task = samples['task']
|
367 |
-
if task == 0:
|
368 |
-
input_ids = samples['s2s_input_ids']
|
369 |
-
type_ids = samples['s2s_token_type_ids']
|
370 |
-
attention_mask = samples['s2s_attention_mask']
|
371 |
-
labels = samples['s2s_masked_lm_labels']
|
372 |
-
dict_pos = samples['dict_pos']
|
373 |
-
s2s_label = samples['s2s_label']
|
374 |
-
else:
|
375 |
-
input_ids = samples['input_ids']
|
376 |
-
type_ids = samples['token_type_ids']
|
377 |
-
attention_mask = samples['attention_mask']
|
378 |
-
labels = samples['masked_lm_labels']
|
379 |
-
dict_pos = samples['dict_pos']
|
380 |
-
s2s_label = samples['s2s_label']
|
381 |
-
|
382 |
-
if self.device is None:
|
383 |
-
self.device = list(self.parameters())[0].device
|
384 |
-
|
385 |
-
input_ids = input_ids.to(self.device)
|
386 |
-
|
387 |
-
type_ids = None
|
388 |
-
lm_labels = labels.to(self.device)
|
389 |
-
s2s_label = s2s_label.to(self.device)
|
390 |
-
attention_mask = attention_mask.to(self.device)
|
391 |
-
|
392 |
-
encoder_output = self.backbone(input_ids, attention_mask, type_ids, output_all_encoded_layers=True, position_ids = position_ids)
|
393 |
-
encoder_layers = encoder_output['hidden_states']
|
394 |
-
z_states = encoder_output['position_embeddings']
|
395 |
-
ctx_layer = encoder_layers[-1]
|
396 |
-
mlm_loss = torch.tensor(0).to(ctx_layer).float()
|
397 |
-
lm_loss = torch.tensor(0).to(ctx_layer).float()
|
398 |
-
lm_logits = None
|
399 |
-
label_inputs = None
|
400 |
-
loss = torch.tensor(0).to(ctx_layer).float()
|
401 |
-
loss_compare = torch.tensor(0).to(ctx_layer).float()
|
402 |
-
|
403 |
-
ebd_weight = self.backbone.embeddings.word_embeddings.weight
|
404 |
-
lm_logits, mlm_logits = self.lm_predictions(encoder_layers, self.backbone.embeddings.word_embeddings,
|
405 |
-
input_ids, z_states,
|
406 |
-
attention_mask, self.backbone.encoder,
|
407 |
-
target_ids=lm_labels)
|
408 |
-
# if lm_labels.detach().sum() != 0:
|
409 |
-
loss_compare, mlm_loss, lm_loss = self.loss(mlm_logits,
|
410 |
-
lm_logits,
|
411 |
-
lm_labels,
|
412 |
-
dict_pos,
|
413 |
-
target_ids_s2s=s2s_label,
|
414 |
-
decode=False,
|
415 |
-
ebd_weight=ebd_weight,
|
416 |
-
input_ids=input_ids,
|
417 |
-
task=task)
|
418 |
-
loss = loss_compare * 10 + mlm_loss + lm_loss
|
419 |
-
# if s2s_label.detach().sum() != 0:
|
420 |
-
# s2s_idx = (s2s_label.sum(-1)>0).nonzero().view(-1)
|
421 |
-
# s2s_label = s2s_label.index_select(0, s2s_idx)
|
422 |
-
# # ebd_weight = self.backbone.embeddings.word_embeddings.weight
|
423 |
-
# # lm_logits = self.lm_predictions(encoder_layers[-3], self.backbone.embeddings.word_embeddings,
|
424 |
-
# # input_ids.index_select(0, s2s_idx), z_states.index_select(0, s2s_idx),
|
425 |
-
# # attention_mask.index_select(0, s2s_idx), self.backbone.encoder,
|
426 |
-
# # target_ids=s2s_label,
|
427 |
-
# # decode=True, s2s_idx=s2s_idx)
|
428 |
-
# # lm_logits = encoder_layers[-1].detach().index_select(0, s2s_idx)
|
429 |
-
# _, lm_loss = self.loss_lm(lm_logits,
|
430 |
-
# s2s_label,
|
431 |
-
# torch.zeros_like(dict_pos),
|
432 |
-
# decode=True,
|
433 |
-
# ebd_weight=ebd_weight,
|
434 |
-
# input_ids=input_ids.index_select(0, s2s_idx))
|
435 |
-
# lm_loss = lm_logits.max()
|
436 |
-
# loss = loss + lm_loss
|
437 |
-
|
438 |
-
return {
|
439 |
-
'logits' : lm_logits,
|
440 |
-
'labels' : lm_labels,
|
441 |
-
's2s_label': s2s_label,
|
442 |
-
'loss' : loss.float(),
|
443 |
-
'loss_compare': loss_compare.float(),
|
444 |
-
'lm_loss': lm_loss.float(),
|
445 |
-
'mlm_loss': mlm_loss.float()
|
446 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|