botdevringring commited on
Commit
f2dff1f
1 Parent(s): 0a5a9c9

Upload 8 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ udhr_th.wav filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - ab
5
+ - af
6
+ - am
7
+ - ar
8
+ - as
9
+ - az
10
+ - ba
11
+ - be
12
+ - bg
13
+ - bi
14
+ - bo
15
+ - br
16
+ - bs
17
+ - ca
18
+ - ceb
19
+ - cs
20
+ - cy
21
+ - da
22
+ - de
23
+ - el
24
+ - en
25
+ - eo
26
+ - es
27
+ - et
28
+ - eu
29
+ - fa
30
+ - fi
31
+ - fo
32
+ - fr
33
+ - gl
34
+ - gn
35
+ - gu
36
+ - gv
37
+ - ha
38
+ - haw
39
+ - hi
40
+ - hr
41
+ - ht
42
+ - hu
43
+ - hy
44
+ - ia
45
+ - id
46
+ - is
47
+ - it
48
+ - he
49
+ - ja
50
+ - jv
51
+ - ka
52
+ - kk
53
+ - km
54
+ - kn
55
+ - ko
56
+ - la
57
+ - lm
58
+ - ln
59
+ - lo
60
+ - lt
61
+ - lv
62
+ - mg
63
+ - mi
64
+ - mk
65
+ - ml
66
+ - mn
67
+ - mr
68
+ - ms
69
+ - mt
70
+ - my
71
+ - ne
72
+ - nl
73
+ - nn
74
+ - no
75
+ - oc
76
+ - pa
77
+ - pl
78
+ - ps
79
+ - pt
80
+ - ro
81
+ - ru
82
+ - sa
83
+ - sco
84
+ - sd
85
+ - si
86
+ - sk
87
+ - sl
88
+ - sn
89
+ - so
90
+ - sq
91
+ - sr
92
+ - su
93
+ - sv
94
+ - sw
95
+ - ta
96
+ - te
97
+ - tg
98
+ - th
99
+ - tk
100
+ - tl
101
+ - tr
102
+ - tt
103
+ - uk
104
+ - ud
105
+ - uz
106
+ - vi
107
+ - war
108
+ - yi
109
+ - yo
110
+ - zh
111
+ thumbnail:
112
+ tags:
113
+ - audio-classification
114
+ - speechbrain
115
+ - embeddings
116
+ - Language
117
+ - Identification
118
+ - pytorch
119
+ - ECAPA-TDNN
120
+ - TDNN
121
+ - VoxLingua107
122
+ license: "apache-2.0"
123
+ datasets:
124
+ - VoxLingua107
125
+ metrics:
126
+ - Accuracy
127
+ widget:
128
+ - example_title: English Sample
129
+ src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0000.flac
130
+ ---
131
+
132
+ # VoxLingua107 ECAPA-TDNN Spoken Language Identification Model
133
+
134
+ ## Model description
135
+
136
+ This is a spoken language recognition model trained on the VoxLingua107 dataset using SpeechBrain.
137
+ The model uses the ECAPA-TDNN architecture that has previously been used for speaker recognition. However, it uses
138
+ more fully connected hidden layers after the embedding layer, and cross-entropy loss was used for training.
139
+ We observed that this improved the performance of extracted utterance embeddings for downstream tasks.
140
+
141
+ The system is trained with recordings sampled at 16kHz (single channel).
142
+ The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed.
143
+
144
+ The model can classify a speech utterance according to the language spoken.
145
+ It covers 107 different languages (
146
+ Abkhazian,
147
+ Afrikaans,
148
+ Amharic,
149
+ Arabic,
150
+ Assamese,
151
+ Azerbaijani,
152
+ Bashkir,
153
+ Belarusian,
154
+ Bulgarian,
155
+ Bengali,
156
+ Tibetan,
157
+ Breton,
158
+ Bosnian,
159
+ Catalan,
160
+ Cebuano,
161
+ Czech,
162
+ Welsh,
163
+ Danish,
164
+ German,
165
+ Greek,
166
+ English,
167
+ Esperanto,
168
+ Spanish,
169
+ Estonian,
170
+ Basque,
171
+ Persian,
172
+ Finnish,
173
+ Faroese,
174
+ French,
175
+ Galician,
176
+ Guarani,
177
+ Gujarati,
178
+ Manx,
179
+ Hausa,
180
+ Hawaiian,
181
+ Hindi,
182
+ Croatian,
183
+ Haitian,
184
+ Hungarian,
185
+ Armenian,
186
+ Interlingua,
187
+ Indonesian,
188
+ Icelandic,
189
+ Italian,
190
+ Hebrew,
191
+ Japanese,
192
+ Javanese,
193
+ Georgian,
194
+ Kazakh,
195
+ Central Khmer,
196
+ Kannada,
197
+ Korean,
198
+ Latin,
199
+ Luxembourgish,
200
+ Lingala,
201
+ Lao,
202
+ Lithuanian,
203
+ Latvian,
204
+ Malagasy,
205
+ Maori,
206
+ Macedonian,
207
+ Malayalam,
208
+ Mongolian,
209
+ Marathi,
210
+ Malay,
211
+ Maltese,
212
+ Burmese,
213
+ Nepali,
214
+ Dutch,
215
+ Norwegian Nynorsk,
216
+ Norwegian,
217
+ Occitan,
218
+ Panjabi,
219
+ Polish,
220
+ Pushto,
221
+ Portuguese,
222
+ Romanian,
223
+ Russian,
224
+ Sanskrit,
225
+ Scots,
226
+ Sindhi,
227
+ Sinhala,
228
+ Slovak,
229
+ Slovenian,
230
+ Shona,
231
+ Somali,
232
+ Albanian,
233
+ Serbian,
234
+ Sundanese,
235
+ Swedish,
236
+ Swahili,
237
+ Tamil,
238
+ Telugu,
239
+ Tajik,
240
+ Thai,
241
+ Turkmen,
242
+ Tagalog,
243
+ Turkish,
244
+ Tatar,
245
+ Ukrainian,
246
+ Urdu,
247
+ Uzbek,
248
+ Vietnamese,
249
+ Waray,
250
+ Yiddish,
251
+ Yoruba,
252
+ Mandarin Chinese).
253
+
254
+ ## Intended uses & limitations
255
+
256
+ The model has two uses:
257
+
258
+ - use 'as is' for spoken language recognition
259
+ - use as an utterance-level feature (embedding) extractor, for creating a dedicated language ID model on your own data
260
+
261
+ The model is trained on automatically collected YouTube data. For more
262
+ information about the dataset, see [here](http://bark.phon.ioc.ee/voxlingua107/).
263
+
264
+
265
+ #### How to use
266
+ ```bash
267
+ pip install git+https://github.com/speechbrain/speechbrain.git@develop
268
+ ```
269
+
270
+ ```python
271
+ import torchaudio
272
+ from speechbrain.inference.classifiers import EncoderClassifier
273
+ language_id = EncoderClassifier.from_hparams(source="speechbrain/lang-id-voxlingua107-ecapa", savedir="tmp")
274
+ # Download Thai language sample from Omniglot and cvert to suitable form
275
+ signal = language_id.load_audio("speechbrain/lang-id-voxlingua107-ecapa/udhr_th.wav")
276
+ prediction = language_id.classify_batch(signal)
277
+ print(prediction)
278
+ # (tensor([[-2.8646e+01, -3.0346e+01, -2.0748e+01, -2.9562e+01, -2.2187e+01,
279
+ # -3.2668e+01, -3.6677e+01, -3.3573e+01, -3.2545e+01, -2.4365e+01,
280
+ # -2.4688e+01, -3.1171e+01, -2.7743e+01, -2.9918e+01, -2.4770e+01,
281
+ # -3.2250e+01, -2.4727e+01, -2.6087e+01, -2.1870e+01, -3.2821e+01,
282
+ # -2.2128e+01, -2.2822e+01, -3.0888e+01, -3.3564e+01, -2.9906e+01,
283
+ # -2.2392e+01, -2.5573e+01, -2.6443e+01, -3.2429e+01, -3.2652e+01,
284
+ # -3.0030e+01, -2.4607e+01, -2.2967e+01, -2.4396e+01, -2.8578e+01,
285
+ # -2.5153e+01, -2.8475e+01, -2.6409e+01, -2.5230e+01, -2.7957e+01,
286
+ # -2.6298e+01, -2.3609e+01, -2.5863e+01, -2.8225e+01, -2.7225e+01,
287
+ # -3.0486e+01, -2.1185e+01, -2.7938e+01, -3.3155e+01, -1.9076e+01,
288
+ # -2.9181e+01, -2.2160e+01, -1.8352e+01, -2.5866e+01, -3.3636e+01,
289
+ # -4.2016e+00, -3.1581e+01, -3.1894e+01, -2.7834e+01, -2.5429e+01,
290
+ # -3.2235e+01, -3.2280e+01, -2.8786e+01, -2.3366e+01, -2.6047e+01,
291
+ # -2.2075e+01, -2.3770e+01, -2.2518e+01, -2.8101e+01, -2.5745e+01,
292
+ # -2.6441e+01, -2.9822e+01, -2.7109e+01, -3.0225e+01, -2.4566e+01,
293
+ # -2.9268e+01, -2.7651e+01, -3.4221e+01, -2.9026e+01, -2.6009e+01,
294
+ # -3.1968e+01, -3.1747e+01, -2.8156e+01, -2.9025e+01, -2.7756e+01,
295
+ # -2.8052e+01, -2.9341e+01, -2.8806e+01, -2.1636e+01, -2.3992e+01,
296
+ # -2.3794e+01, -3.3743e+01, -2.8332e+01, -2.7465e+01, -1.5085e-02,
297
+ # -2.9094e+01, -2.1444e+01, -2.9780e+01, -3.6046e+01, -3.7401e+01,
298
+ # -3.0888e+01, -3.3172e+01, -1.8931e+01, -2.2679e+01, -3.0225e+01,
299
+ # -2.4995e+01, -2.1028e+01]]), tensor([-0.0151]), tensor([94]), ['th'])
300
+ # The scores in the prediction[0] tensor can be interpreted as log-likelihoods that
301
+ # the given utterance belongs to the given language (i.e., the larger the better)
302
+ # The linear-scale likelihood can be retrieved using the following:
303
+ print(prediction[1].exp())
304
+ # tensor([0.9850])
305
+ # The identified language ISO code is given in prediction[3]
306
+ print(prediction[3])
307
+ # ['th: Thai']
308
+
309
+ # Alternatively, use the utterance embedding extractor:
310
+ emb = language_id.encode_batch(signal)
311
+ print(emb.shape)
312
+ # torch.Size([1, 1, 256])
313
+ ```
314
+ To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
315
+
316
+ The system is trained with recordings sampled at 16kHz (single channel).
317
+ The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*.
318
+
319
+ #### Limitations and bias
320
+
321
+ Since the model is trained on VoxLingua107, it has many limitations and biases, some of which are:
322
+
323
+ - Probably it's accuracy on smaller languages is quite limited
324
+ - Probably it works worse on female speech than male speech (because YouTube data includes much more male speech)
325
+ - Based on subjective experiments, it doesn't work well on speech with a foreign accent
326
+ - Probably it doesn't work well on children's speech and on persons with speech disorders
327
+
328
+
329
+ ## Training data
330
+
331
+ The model is trained on [VoxLingua107](http://bark.phon.ioc.ee/voxlingua107/).
332
+
333
+ VoxLingua107 is a speech dataset for training spoken language identification models.
334
+ The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives.
335
+
336
+ VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours.
337
+ The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language.
338
+
339
+ ## Training procedure
340
+
341
+ See the [SpeechBrain recipe](https://github.com/speechbrain/speechbrain/tree/voxlingua107/recipes/VoxLingua107/lang_id).
342
+
343
+ ## Evaluation results
344
+
345
+ Error rate: 6.7% on the VoxLingua107 development dataset
346
+
347
+ #### Referencing SpeechBrain
348
+ ```bibtex
349
+ @misc{speechbrain,
350
+ title={{SpeechBrain}: A General-Purpose Speech Toolkit},
351
+ author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
352
+ year={2021},
353
+ eprint={2106.04624},
354
+ archivePrefix={arXiv},
355
+ primaryClass={eess.AS},
356
+ note={arXiv:2106.04624}
357
+ }
358
+ ```
359
+
360
+ ### Referencing VoxLingua107
361
+
362
+ ```bibtex
363
+ @inproceedings{valk2021slt,
364
+ title={{VoxLingua107}: a Dataset for Spoken Language Recognition},
365
+ author={J{\"o}rgen Valk and Tanel Alum{\"a}e},
366
+ booktitle={Proc. IEEE SLT Workshop},
367
+ year={2021},
368
+ }
369
+ ```
370
+
371
+ #### About SpeechBrain
372
+ SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
373
+ Website: https://speechbrain.github.io/
374
+ GitHub: https://github.com/speechbrain/speechbrain
classifier.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d28b65b8865d1d6cd4570ba660bbf070458eab8bdb99b7f37faaf1fc9349f4c
3
+ size 131
config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "speechbrain_interface": "EncoderClassifier"
3
+ }
embedding_model.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab750d5c06d713477045fa798fab5d33e959dbc0dfe4de510a9a47844c79a19a
3
+ size 84474355
hyperparams.yaml ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pretrained_path: speechbrain/lang-id-voxlingua107-ecapa
2
+
3
+
4
+ # Feature parameters
5
+ n_mels: 60
6
+ left_frames: 0
7
+ right_frames: 0
8
+ deltas: false
9
+
10
+ # Number of speakers
11
+ out_n_neurons: 107
12
+
13
+ # Functions
14
+ compute_features: !new:speechbrain.lobes.features.Fbank
15
+ n_mels: 60
16
+ left_frames: 0
17
+ right_frames: 0
18
+ deltas: false
19
+
20
+ embedding_model: !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
21
+ input_size: 60
22
+ channels: [1024, 1024, 1024, 1024, 3072]
23
+ kernel_sizes: [5, 3, 3, 3, 1]
24
+ dilations: [1, 2, 3, 4, 1]
25
+ attention_channels: 128
26
+ lin_neurons: 256
27
+
28
+
29
+ classifier: !new:speechbrain.lobes.models.Xvector.Classifier
30
+ input_shape: [null, null, 256]
31
+ activation: !name:torch.nn.LeakyReLU
32
+ lin_blocks: 1
33
+ lin_neurons: 512
34
+ out_neurons: !ref <out_n_neurons>
35
+
36
+
37
+ mean_var_norm: !new:speechbrain.processing.features.InputNormalization
38
+ norm_type: sentence
39
+ std_norm: false
40
+
41
+ modules:
42
+ compute_features: !ref <compute_features>
43
+ mean_var_norm: !ref <mean_var_norm>
44
+ embedding_model: !ref <embedding_model>
45
+ classifier: !ref <classifier>
46
+
47
+ label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder
48
+
49
+ pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
50
+ loadables:
51
+ embedding_model: !ref <embedding_model>
52
+ classifier: !ref <classifier>
53
+ label_encoder: !ref <label_encoder>
54
+ paths:
55
+ embedding_model: !ref <pretrained_path>/embedding_model.ckpt
56
+ classifier: !ref <pretrained_path>/classifier.ckpt
57
+ label_encoder: !ref <pretrained_path>/label_encoder.txt
label_encoder.txt ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 'ab: Abkhazian' => 0
2
+ 'af: Afrikaans' => 1
3
+ 'am: Amharic' => 2
4
+ 'ar: Arabic' => 3
5
+ 'as: Assamese' => 4
6
+ 'az: Azerbaijani' => 5
7
+ 'ba: Bashkir' => 6
8
+ 'be: Belarusian' => 7
9
+ 'bg: Bulgarian' => 8
10
+ 'bn: Bengali' => 9
11
+ 'bo: Tibetan' => 10
12
+ 'br: Breton' => 11
13
+ 'bs: Bosnian' => 12
14
+ 'ca: Catalan' => 13
15
+ 'ceb: Cebuano' => 14
16
+ 'cs: Czech' => 15
17
+ 'cy: Welsh' => 16
18
+ 'da: Danish' => 17
19
+ 'de: German' => 18
20
+ 'el: Greek' => 19
21
+ 'en: English' => 20
22
+ 'eo: Esperanto' => 21
23
+ 'es: Spanish' => 22
24
+ 'et: Estonian' => 23
25
+ 'eu: Basque' => 24
26
+ 'fa: Persian' => 25
27
+ 'fi: Finnish' => 26
28
+ 'fo: Faroese' => 27
29
+ 'fr: French' => 28
30
+ 'gl: Galician' => 29
31
+ 'gn: Guarani' => 30
32
+ 'gu: Gujarati' => 31
33
+ 'gv: Manx' => 32
34
+ 'ha: Hausa' => 33
35
+ 'haw: Hawaiian' => 34
36
+ 'hi: Hindi' => 35
37
+ 'hr: Croatian' => 36
38
+ 'ht: Haitian' => 37
39
+ 'hu: Hungarian' => 38
40
+ 'hy: Armenian' => 39
41
+ 'ia: Interlingua' => 40
42
+ 'id: Indonesian' => 41
43
+ 'is: Icelandic' => 42
44
+ 'it: Italian' => 43
45
+ 'iw: Hebrew' => 44
46
+ 'ja: Japanese' => 45
47
+ 'jw: Javanese' => 46
48
+ 'ka: Georgian' => 47
49
+ 'kk: Kazakh' => 48
50
+ 'km: Central Khmer' => 49
51
+ 'kn: Kannada' => 50
52
+ 'ko: Korean' => 51
53
+ 'la: Latin' => 52
54
+ 'lb: Luxembourgish' => 53
55
+ 'ln: Lingala' => 54
56
+ 'lo: Lao' => 55
57
+ 'lt: Lithuanian' => 56
58
+ 'lv: Latvian' => 57
59
+ 'mg: Malagasy' => 58
60
+ 'mi: Maori' => 59
61
+ 'mk: Macedonian' => 60
62
+ 'ml: Malayalam' => 61
63
+ 'mn: Mongolian' => 62
64
+ 'mr: Marathi' => 63
65
+ 'ms: Malay' => 64
66
+ 'mt: Maltese' => 65
67
+ 'my: Burmese' => 66
68
+ 'ne: Nepali' => 67
69
+ 'nl: Dutch' => 68
70
+ 'nn: Norwegian Nynorsk' => 69
71
+ 'no: Norwegian' => 70
72
+ 'oc: Occitan' => 71
73
+ 'pa: Panjabi' => 72
74
+ 'pl: Polish' => 73
75
+ 'ps: Pushto' => 74
76
+ 'pt: Portuguese' => 75
77
+ 'ro: Romanian' => 76
78
+ 'ru: Russian' => 77
79
+ 'sa: Sanskrit' => 78
80
+ 'sco: Scots' => 79
81
+ 'sd: Sindhi' => 80
82
+ 'si: Sinhala' => 81
83
+ 'sk: Slovak' => 82
84
+ 'sl: Slovenian' => 83
85
+ 'sn: Shona' => 84
86
+ 'so: Somali' => 85
87
+ 'sq: Albanian' => 86
88
+ 'sr: Serbian' => 87
89
+ 'su: Sundanese' => 88
90
+ 'sv: Swedish' => 89
91
+ 'sw: Swahili' => 90
92
+ 'ta: Tamil' => 91
93
+ 'te: Telugu' => 92
94
+ 'tg: Tajik' => 93
95
+ 'th: Thai' => 94
96
+ 'tk: Turkmen' => 95
97
+ 'tl: Tagalog' => 96
98
+ 'tr: Turkish' => 97
99
+ 'tt: Tatar' => 98
100
+ 'uk: Ukrainian' => 99
101
+ 'ur: Urdu' => 100
102
+ 'uz: Uzbek' => 101
103
+ 'vi: Vietnamese' => 102
104
+ 'war: Waray' => 103
105
+ 'yi: Yiddish' => 104
106
+ 'yo: Yoruba' => 105
107
+ 'zh: Chinese' => 106
108
+ ================
109
+ 'starting_index' => 0
normalizer.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adde2a816a739382b4771c3eb1afbc1d0e1c69c3cab7b038e59f359106feec35
3
+ size 129
udhr_th.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bdc3a0a686eed58c6ccff264c5605a3c245e6598610dcc6e355104758acc6d7
3
+ size 1146684