Update README.md
Browse files
README.md
CHANGED
@@ -7,7 +7,7 @@ tags:
|
|
7 |
- en
|
8 |
- ko
|
9 |
---
|
10 |
-
#
|
11 |
|
12 |
- bert-base-multilingual-cased 모델에 [moco-corpus-kowiki2022 말뭉치](https://huggingface.co/datasets/bongsoo/moco-corpus-kowiki2022)(kowiki202206 + MOCOMSYS 추출 3.2M 문장)로 vocab 추가하여 학습 시킨 모델
|
13 |
- **vocab: 152,537개**(기존 bert 모델 vocab(119,548개)에 32,989개 vocab 추가)
|
@@ -18,10 +18,42 @@ tags:
|
|
18 |
from transformers import AutoTokenizer, AutoModel
|
19 |
import torch
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
model = AutoModel.from_pretrained('bongsoo/mbertV2.0')
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
```
|
|
|
25 |
## Training
|
26 |
|
27 |
**MLM(Masked Langeuage Model) 훈련**
|
|
|
7 |
- en
|
8 |
- ko
|
9 |
---
|
10 |
+
# mbertV2.0
|
11 |
|
12 |
- bert-base-multilingual-cased 모델에 [moco-corpus-kowiki2022 말뭉치](https://huggingface.co/datasets/bongsoo/moco-corpus-kowiki2022)(kowiki202206 + MOCOMSYS 추출 3.2M 문장)로 vocab 추가하여 학습 시킨 모델
|
13 |
- **vocab: 152,537개**(기존 bert 모델 vocab(119,548개)에 32,989개 vocab 추가)
|
|
|
18 |
from transformers import AutoTokenizer, AutoModel
|
19 |
import torch
|
20 |
|
21 |
+
|
22 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
23 |
+
def mean_pooling(model_output, attention_mask):
|
24 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
25 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
26 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
27 |
+
|
28 |
+
|
29 |
+
# Sentences we want sentence embeddings for
|
30 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
31 |
+
|
32 |
+
# Load model from HuggingFace Hub
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained('bongsoo/mbertV2.0')
|
34 |
model = AutoModel.from_pretrained('bongsoo/mbertV2.0')
|
35 |
|
36 |
+
# Tokenize sentences
|
37 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
38 |
+
|
39 |
+
# Compute token embeddings
|
40 |
+
with torch.no_grad():
|
41 |
+
model_output = model(**encoded_input)
|
42 |
+
|
43 |
+
# Perform pooling. In this case, mean pooling.
|
44 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
45 |
+
|
46 |
+
print("Sentence embeddings:")
|
47 |
+
print(sentence_embeddings)
|
48 |
+
|
49 |
+
# sklearn 을 이용하여 cosine_scores를 구함
|
50 |
+
# => 입력값 embeddings 은 (1,768) 처럼 2D 여야 함.
|
51 |
+
from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances
|
52 |
+
cosine_scores = 1 - (paired_cosine_distances(sentence_embeddings[0].reshape(1,-1), sentence_embeddings[1].reshape(1,-1)))
|
53 |
+
|
54 |
+
print(f'*cosine_score:{cosine_scores[0]}')
|
55 |
```
|
56 |
+
|
57 |
## Training
|
58 |
|
59 |
**MLM(Masked Langeuage Model) 훈련**
|