bongsoo commited on
Commit
4859fb0
1 Parent(s): 331771b

sbert 모델 업로드

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md CHANGED
@@ -1,3 +1,123 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
  ---
9
+
10
+ # {MODEL_NAME}
11
+
12
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
+
14
+ <!--- Describe your model here -->
15
+
16
+ ## Usage (Sentence-Transformers)
17
+
18
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
+
20
+ ```
21
+ pip install -U sentence-transformers
22
+ ```
23
+
24
+ Then you can use the model like this:
25
+
26
+ ```python
27
+ from sentence_transformers import SentenceTransformer
28
+ sentences = ["This is an example sentence", "Each sentence is converted"]
29
+
30
+ model = SentenceTransformer('{MODEL_NAME}')
31
+ embeddings = model.encode(sentences)
32
+ print(embeddings)
33
+ ```
34
+
35
+
36
+
37
+ ## Usage (HuggingFace Transformers)
38
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
+
40
+ ```python
41
+ from transformers import AutoTokenizer, AutoModel
42
+ import torch
43
+
44
+
45
+ def cls_pooling(model_output, attention_mask):
46
+ return model_output[0][:,0]
47
+
48
+
49
+ # Sentences we want sentence embeddings for
50
+ sentences = ['This is an example sentence', 'Each sentence is converted']
51
+
52
+ # Load model from HuggingFace Hub
53
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
54
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
55
+
56
+ # Tokenize sentences
57
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
58
+
59
+ # Compute token embeddings
60
+ with torch.no_grad():
61
+ model_output = model(**encoded_input)
62
+
63
+ # Perform pooling. In this case, cls pooling.
64
+ sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
65
+
66
+ print("Sentence embeddings:")
67
+ print(sentence_embeddings)
68
+ ```
69
+
70
+
71
+
72
+ ## Evaluation Results
73
+
74
+ <!--- Describe how your model was evaluated -->
75
+
76
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
77
+
78
+
79
+ ## Training
80
+ The model was trained with the parameters:
81
+
82
+ **DataLoader**:
83
+
84
+ `torch.utils.data.dataloader.DataLoader` of length 1303 with parameters:
85
+ ```
86
+ {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
87
+ ```
88
+
89
+ **Loss**:
90
+
91
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
92
+
93
+ Parameters of the fit()-Method:
94
+ ```
95
+ {
96
+ "epochs": 10,
97
+ "evaluation_steps": 2605,
98
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
99
+ "max_grad_norm": 1,
100
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
101
+ "optimizer_params": {
102
+ "eps": 1e-06,
103
+ "lr": 0.0001
104
+ },
105
+ "scheduler": "WarmupLinear",
106
+ "steps_per_epoch": null,
107
+ "warmup_steps": 1303,
108
+ "weight_decay": 0.01
109
+ }
110
+ ```
111
+
112
+
113
+ ## Full Model Architecture
114
+ ```
115
+ SentenceTransformer(
116
+ (0): Transformer({'max_seq_length': 72, 'do_lower_case': True}) with Transformer model: AlbertModel
117
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
118
+ )
119
+ ```
120
+
121
+ ## Citing & Authors
122
+
123
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../../data11/model/moco/sbert-albert-small-sts-distil-nli/",
3
+ "architectures": [
4
+ "AlbertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0,
7
+ "bos_token_id": 2,
8
+ "classifier_dropout_prob": 0.1,
9
+ "embedding_size": 128,
10
+ "eos_token_id": 3,
11
+ "hidden_act": "gelu_new",
12
+ "hidden_dropout_prob": 0,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "inner_group_num": 1,
16
+ "intermediate_size": 3072,
17
+ "layer_norm_eps": 1e-12,
18
+ "max_position_embeddings": 512,
19
+ "model_type": "albert",
20
+ "num_attention_heads": 12,
21
+ "num_hidden_groups": 1,
22
+ "num_hidden_layers": 6,
23
+ "pad_token_id": 0,
24
+ "position_embedding_type": "absolute",
25
+ "tokenizer_class": "AlbertTokenizerFast",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.21.2",
28
+ "type_vocab_size": 2,
29
+ "vocab_size": 30000
30
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.0",
4
+ "transformers": "4.21.2",
5
+ "pytorch": "1.10.1"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ab37c464f5c1231bc4e71350e726c810dfc2f73f6153d486955f7743b02de94
3
+ size 46746519
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": {
6
+ "content": "[MASK]",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "[PAD]",
13
+ "sep_token": "[SEP]",
14
+ "unk_token": "[UNK]"
15
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acfb0d032fb54ca202c9e07d98ef2bf4566d39de774d0e65dba3b9562a9afac0
3
+ size 773715
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "do_lower_case": true,
5
+ "eos_token": "[SEP]",
6
+ "keep_acccents": false,
7
+ "keep_accents": true,
8
+ "mask_token": {
9
+ "__type": "AddedToken",
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "max_len": 128,
17
+ "name_or_path": "../../data11/model/moco/sbert-albert-small-sts-distil-nli/",
18
+ "pad_token": "[PAD]",
19
+ "remove_space": true,
20
+ "sep_token": "[SEP]",
21
+ "sp_model_kwargs": {},
22
+ "special_tokens_map_file": "../../data11/ai_hub/vocab/tl1-1줄-mecab-30000-sp-unigram-22M-vocab/special_tokens_map.json",
23
+ "tokenizer_class": "AlbertTokenizer",
24
+ "unk_token": "[UNK]"
25
+ }