boltuix commited on
Commit
20307c6
ยท
verified ยท
1 Parent(s): ab9093a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -5
README.md CHANGED
@@ -51,11 +51,30 @@ library_name: transformers
51
  # ๐Ÿง  boltuix/bert-mini โ€” Ultra Lightweight BERT for Real-Time NLP ๐Ÿš€
52
 
53
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
54
- [![Model Size](https://img.shields.io/badge/Size-~44MB-blue)](#)
55
  [![Tasks](https://img.shields.io/badge/Tasks-NLI%20%7C%20Intent--Detection%20%7C%20Sentiment%20Analysis-orange)](#)
56
  [![Inference Speed](https://img.shields.io/badge/Optimized%20For-Edge%20Devices-green)](#)
57
 
58
- `bert-mini` is a compact, real-time NLP model derived from BERT but streamlined for blazing-fast inference on constrained hardware โ€” think IoT, wearables, and mobile apps. ๐Ÿ›ฐ๏ธ
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
  ---
61
 
@@ -65,7 +84,7 @@ library_name: transformers
65
  |------------------------|-------------------------------------------------------|
66
  | ๐Ÿ” **Architecture** | Lightweight BERT (โ‰ˆ4 layers, hidden size 256) |
67
  | โš™๏ธ **Parameters** | ~11M (vs. 110M in BERT-base) |
68
- | ๐Ÿ’พ **Model Size** | ~44MB (quantized) |
69
  | โšก **Speed** | Real-time inference on mobile and edge devices |
70
  | ๐ŸŒ **Use Cases** | NLI, intent detection, voice assistants, offline chat |
71
  | ๐Ÿ“š **Datasets** | Wikipedia, BookCorpus, MNLI, All-NLI |
@@ -130,6 +149,22 @@ Input: Please [MASK] the door before leaving.
130
  - ๐Ÿค– **Toy & Robotics**: Lightweight command understanding
131
  - โŒš **Wearables**: Real-time sentiment & intent detection
132
  - ๐Ÿงช **AI on Budget**: NLP on minimal compute resources
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
  ---
135
 
@@ -144,7 +179,14 @@ Input: Please [MASK] the door before leaving.
144
 
145
  ## ๐Ÿท๏ธ Tags
146
 
147
- `#tiny-bert` `#edge-ai` `#intent-detection` `#nlp` `#smart-home` `#wearable-ai` `#offline-assistant` `#transformers` `#real-time`
 
 
 
 
 
 
 
148
 
149
  ---
150
 
@@ -156,7 +198,6 @@ MIT License โ€” free for commercial and personal use.
156
 
157
  ## ๐Ÿ™Œ Credits
158
 
159
- Developed by [Hari Shankar S (boltuix)](https://huggingface.co/boltuix)
160
  Base Model: [`google-bert/bert-base-uncased`](https://huggingface.co/google-bert/bert-base-uncased)
161
  Optimized and Quantized for edge AI scenarios.
162
 
 
51
  # ๐Ÿง  boltuix/bert-mini โ€” Ultra Lightweight BERT for Real-Time NLP ๐Ÿš€
52
 
53
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
54
+ [![Model Size](https://img.shields.io/badge/Size-~40MB-blue)](#)
55
  [![Tasks](https://img.shields.io/badge/Tasks-NLI%20%7C%20Intent--Detection%20%7C%20Sentiment%20Analysis-orange)](#)
56
  [![Inference Speed](https://img.shields.io/badge/Optimized%20For-Edge%20Devices-green)](#)
57
 
58
+ `bert-mini` is a compact, real-time Natural Language Processing (NLP) model derived from the original BERT architecture. Engineered for **low-latency** and **on-device inference**, it delivers impressive language understanding while keeping memory and compute requirements minimal โ€” making it perfect for **IoT devices**, **mobile apps**, **wearables**, and **edge AI systems**.
59
+
60
+ Unlike larger BERT variants, `bert-mini` retains deep **contextual understanding** even in resource-constrained environments, making it ideal for practical, production-ready applications in 2025 and beyond.
61
+
62
+ ---
63
+
64
+ ## โœจ What Makes It Special?
65
+
66
+ - ๐Ÿง  **Contextual Awareness**: Captures semantic relationships in natural language, enabling rich understanding even with fewer parameters
67
+ - โšก **Ultra-lightweight**: Designed for real-time performance on CPUs, mobile NPUs, and microcontrollers
68
+ - ๐Ÿ“ถ **Works Offline**: Fully functional without internet access โ€” ideal for privacy-first or remote applications
69
+
70
+ ---
71
+
72
+ ## ๐Ÿท๏ธ Use It For
73
+
74
+ - **Named Entity Recognition (NER)**: Recognize entities like names, locations, and dates in context
75
+ - **Intent & Sentiment Detection**: Real-time understanding of user intent or emotion in conversation
76
+ - **Text Classification**: Categorize support tickets, classify queries, detect spam or product reviews
77
+ - **Conversational AI**: Enable chatbots or voice assistants that work offline and understand meaning deeply
78
 
79
  ---
80
 
 
84
  |------------------------|-------------------------------------------------------|
85
  | ๐Ÿ” **Architecture** | Lightweight BERT (โ‰ˆ4 layers, hidden size 256) |
86
  | โš™๏ธ **Parameters** | ~11M (vs. 110M in BERT-base) |
87
+ | ๐Ÿ’พ **Model Size** | ~40MB (quantized) |
88
  | โšก **Speed** | Real-time inference on mobile and edge devices |
89
  | ๐ŸŒ **Use Cases** | NLI, intent detection, voice assistants, offline chat |
90
  | ๐Ÿ“š **Datasets** | Wikipedia, BookCorpus, MNLI, All-NLI |
 
149
  - ๐Ÿค– **Toy & Robotics**: Lightweight command understanding
150
  - โŒš **Wearables**: Real-time sentiment & intent detection
151
  - ๐Ÿงช **AI on Budget**: NLP on minimal compute resources
152
+ - ๐ŸŒ **Offline Translators**: Sentence-level translation aid for low-resource devices
153
+ - โœˆ๏ธ **Travel Companions**: Localized query understanding in airports/stations
154
+ - ๐Ÿง  **Offline Chatbots**: Customer support on mobile/embedded devices
155
+ - ๐Ÿ“‹ **Form Validation**: Understand and validate form entries locally
156
+ - ๐Ÿ•ต๏ธ **Toxicity Detection**: On-device moderation in comments/posts
157
+ - ๐Ÿ“ถ **Zero-Connectivity Zones**: Chat and query resolution without internet
158
+ - ๐Ÿ’ฌ **In-App Smart Search**: NLP-powered semantic search for mobile apps
159
+ - ๐Ÿ›’ **Voice Commerce**: Product discovery through voice on low-end devices
160
+ - ๐Ÿง˜ **Mental Health Assistants**: Detect user mood & sentiment offline
161
+ - ๐Ÿƒ **Fitness Trackers**: Voice/text feedback processing in wearables
162
+ - ๐ŸŽฎ **Voice-Controlled Games**: Understand player commands in real time
163
+ - ๐Ÿ“š **Childrenโ€™s Story Devices**: Adjust narratives based on user input
164
+ - ๐Ÿ’ก **IoT Dashboards**: Lightweight NLP command parsing for smart devices
165
+ - ๐Ÿš˜ **Car Assistants**: Local command understanding without cloud APIs
166
+ - ๐Ÿ› ๏ธ **Offline Code Review Bots**: NLP-driven comment linting in dev tools
167
+ - ๐Ÿ“ฑ **App Feedback Analyzers**: Sentiment analysis of user reviews locally
168
 
169
  ---
170
 
 
179
 
180
  ## ๐Ÿท๏ธ Tags
181
 
182
+ `#bert-mini` `#edge-nlp` `#lightweight-models` `#on-device-ai`
183
+ `#contextual-nlp` `#real-time-inference` `#offline-nlp` `#mobile-ai`
184
+ `#intent-recognition` `#named-entity-recognition` `#ner` `#text-classification`
185
+ `#transformers` `#tiny-transformers` `#embedded-nlp` `#smart-device-ai`
186
+ `#low-latency-models` `#resource-efficient-ai` `#minimal-nlp` `#ai-for-iot`
187
+ `#efficient-bert` `#nlp2025` `#context-aware` `#edge-ml` `#fast-nlp`
188
+ `#ai` `#ml` `#bert` `#google` `#artificial-intelligence` `#machine-learning`
189
+ `#deep-learning` `#natural-language-processing`
190
 
191
  ---
192
 
 
198
 
199
  ## ๐Ÿ™Œ Credits
200
 
 
201
  Base Model: [`google-bert/bert-base-uncased`](https://huggingface.co/google-bert/bert-base-uncased)
202
  Optimized and Quantized for edge AI scenarios.
203