Text Classification
	
	
	
	
	Transformers
	
	
	
	
	Safetensors
	
	
	
		
	
	English
	
	
	
	
	bert
	
	
	
	
	fill-mask
	
	
	
	
	BERT
	
	
	
	
	NeuroBERT
	
	
	
	
	transformer
	
	
	
	
	pre-training
	
	
	
	
	nlp
	
	
	
	
	tiny-bert
	
	
	
	
	edge-ai
	
	
	
	
	low-resource
	
	
	
	
	micro-nlp
	
	
	
	
	quantized
	
	
	
	
	iot
	
	
	
	
	wearable-ai
	
	
	
	
	offline-assistant
	
	
	
	
	intent-detection
	
	
	
	
	real-time
	
	
	
	
	smart-home
	
	
	
	
	embedded-systems
	
	
	
	
	command-classification
	
	
	
	
	toy-robotics
	
	
	
	
	voice-ai
	
	
	
	
	eco-ai
	
	
	
	
	english
	
	
	
	
	lightweight
	
	
	
	
	mobile-nlp
	
	
	
	
	ner
	
	
Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -51,11 +51,30 @@ library_name: transformers | |
| 51 | 
             
            # ๐ง  boltuix/bert-mini โ Ultra Lightweight BERT for Real-Time NLP ๐
         | 
| 52 |  | 
| 53 | 
             
            [](https://opensource.org/licenses/MIT)
         | 
| 54 | 
            -
            [](#)
         | 
| 56 | 
             
            [](#)
         | 
| 57 |  | 
| 58 | 
            -
            `bert-mini` is a compact, real-time NLP model derived from BERT  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 59 |  | 
| 60 | 
             
            ---
         | 
| 61 |  | 
| @@ -65,7 +84,7 @@ library_name: transformers | |
| 65 | 
             
            |------------------------|-------------------------------------------------------|
         | 
| 66 | 
             
            | ๐ **Architecture**    | Lightweight BERT (โ4 layers, hidden size 256)         |
         | 
| 67 | 
             
            | โ๏ธ **Parameters**      | ~11M (vs. 110M in BERT-base)                          |
         | 
| 68 | 
            -
            | ๐พ **Model Size**      | ~ | 
| 69 | 
             
            | โก **Speed**            | Real-time inference on mobile and edge devices        |
         | 
| 70 | 
             
            | ๐ **Use Cases**       | NLI, intent detection, voice assistants, offline chat |
         | 
| 71 | 
             
            | ๐ **Datasets**        | Wikipedia, BookCorpus, MNLI, All-NLI                  |
         | 
| @@ -130,6 +149,22 @@ Input: Please [MASK] the door before leaving. | |
| 130 | 
             
            - ๐ค **Toy & Robotics**: Lightweight command understanding  
         | 
| 131 | 
             
            - โ **Wearables**: Real-time sentiment & intent detection  
         | 
| 132 | 
             
            - ๐งช **AI on Budget**: NLP on minimal compute resources  
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 133 |  | 
| 134 | 
             
            ---
         | 
| 135 |  | 
| @@ -144,7 +179,14 @@ Input: Please [MASK] the door before leaving. | |
| 144 |  | 
| 145 | 
             
            ## ๐ท๏ธ Tags
         | 
| 146 |  | 
| 147 | 
            -
            `# | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 148 |  | 
| 149 | 
             
            ---
         | 
| 150 |  | 
| @@ -156,7 +198,6 @@ MIT License โ free for commercial and personal use. | |
| 156 |  | 
| 157 | 
             
            ## ๐ Credits
         | 
| 158 |  | 
| 159 | 
            -
            Developed by [Hari Shankar S (boltuix)](https://huggingface.co/boltuix)  
         | 
| 160 | 
             
            Base Model: [`google-bert/bert-base-uncased`](https://huggingface.co/google-bert/bert-base-uncased)  
         | 
| 161 | 
             
            Optimized and Quantized for edge AI scenarios.
         | 
| 162 |  | 
|  | |
| 51 | 
             
            # ๐ง  boltuix/bert-mini โ Ultra Lightweight BERT for Real-Time NLP ๐
         | 
| 52 |  | 
| 53 | 
             
            [](https://opensource.org/licenses/MIT)
         | 
| 54 | 
            +
            [](#)
         | 
| 55 | 
             
            [](#)
         | 
| 56 | 
             
            [](#)
         | 
| 57 |  | 
| 58 | 
            +
            `bert-mini` is a compact, real-time Natural Language Processing (NLP) model derived from the original BERT architecture. Engineered for **low-latency** and **on-device inference**, it delivers impressive language understanding while keeping memory and compute requirements minimal โ making it perfect for **IoT devices**, **mobile apps**, **wearables**, and **edge AI systems**.
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            Unlike larger BERT variants, `bert-mini` retains deep **contextual understanding** even in resource-constrained environments, making it ideal for practical, production-ready applications in 2025 and beyond.
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            ---
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            ## โจ What Makes It Special?
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            - ๐ง  **Contextual Awareness**: Captures semantic relationships in natural language, enabling rich understanding even with fewer parameters  
         | 
| 67 | 
            +
            - โก **Ultra-lightweight**: Designed for real-time performance on CPUs, mobile NPUs, and microcontrollers  
         | 
| 68 | 
            +
            - ๐ถ **Works Offline**: Fully functional without internet access โ ideal for privacy-first or remote applications  
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            ---
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            ## ๐ท๏ธ Use It For
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            - **Named Entity Recognition (NER)**: Recognize entities like names, locations, and dates in context  
         | 
| 75 | 
            +
            - **Intent & Sentiment Detection**: Real-time understanding of user intent or emotion in conversation  
         | 
| 76 | 
            +
            - **Text Classification**: Categorize support tickets, classify queries, detect spam or product reviews  
         | 
| 77 | 
            +
            - **Conversational AI**: Enable chatbots or voice assistants that work offline and understand meaning deeply  
         | 
| 78 |  | 
| 79 | 
             
            ---
         | 
| 80 |  | 
|  | |
| 84 | 
             
            |------------------------|-------------------------------------------------------|
         | 
| 85 | 
             
            | ๐ **Architecture**    | Lightweight BERT (โ4 layers, hidden size 256)         |
         | 
| 86 | 
             
            | โ๏ธ **Parameters**      | ~11M (vs. 110M in BERT-base)                          |
         | 
| 87 | 
            +
            | ๐พ **Model Size**      | ~40MB (quantized)                                     |
         | 
| 88 | 
             
            | โก **Speed**            | Real-time inference on mobile and edge devices        |
         | 
| 89 | 
             
            | ๐ **Use Cases**       | NLI, intent detection, voice assistants, offline chat |
         | 
| 90 | 
             
            | ๐ **Datasets**        | Wikipedia, BookCorpus, MNLI, All-NLI                  |
         | 
|  | |
| 149 | 
             
            - ๐ค **Toy & Robotics**: Lightweight command understanding  
         | 
| 150 | 
             
            - โ **Wearables**: Real-time sentiment & intent detection  
         | 
| 151 | 
             
            - ๐งช **AI on Budget**: NLP on minimal compute resources  
         | 
| 152 | 
            +
            - ๐ **Offline Translators**: Sentence-level translation aid for low-resource devices  
         | 
| 153 | 
            +
            - โ๏ธ **Travel Companions**: Localized query understanding in airports/stations  
         | 
| 154 | 
            +
            - ๐ง  **Offline Chatbots**: Customer support on mobile/embedded devices  
         | 
| 155 | 
            +
            - ๐ **Form Validation**: Understand and validate form entries locally  
         | 
| 156 | 
            +
            - ๐ต๏ธ **Toxicity Detection**: On-device moderation in comments/posts  
         | 
| 157 | 
            +
            - ๐ถ **Zero-Connectivity Zones**: Chat and query resolution without internet  
         | 
| 158 | 
            +
            - ๐ฌ **In-App Smart Search**: NLP-powered semantic search for mobile apps  
         | 
| 159 | 
            +
            - ๐ **Voice Commerce**: Product discovery through voice on low-end devices  
         | 
| 160 | 
            +
            - ๐ง **Mental Health Assistants**: Detect user mood & sentiment offline  
         | 
| 161 | 
            +
            - ๐ **Fitness Trackers**: Voice/text feedback processing in wearables  
         | 
| 162 | 
            +
            - ๐ฎ **Voice-Controlled Games**: Understand player commands in real time  
         | 
| 163 | 
            +
            - ๐ **Childrenโs Story Devices**: Adjust narratives based on user input  
         | 
| 164 | 
            +
            - ๐ก **IoT Dashboards**: Lightweight NLP command parsing for smart devices  
         | 
| 165 | 
            +
            - ๐ **Car Assistants**: Local command understanding without cloud APIs  
         | 
| 166 | 
            +
            - ๐ ๏ธ **Offline Code Review Bots**: NLP-driven comment linting in dev tools  
         | 
| 167 | 
            +
            - ๐ฑ **App Feedback Analyzers**: Sentiment analysis of user reviews locally
         | 
| 168 |  | 
| 169 | 
             
            ---
         | 
| 170 |  | 
|  | |
| 179 |  | 
| 180 | 
             
            ## ๐ท๏ธ Tags
         | 
| 181 |  | 
| 182 | 
            +
            `#bert-mini` `#edge-nlp` `#lightweight-models` `#on-device-ai`  
         | 
| 183 | 
            +
            `#contextual-nlp` `#real-time-inference` `#offline-nlp` `#mobile-ai`  
         | 
| 184 | 
            +
            `#intent-recognition` `#named-entity-recognition` `#ner` `#text-classification`  
         | 
| 185 | 
            +
            `#transformers` `#tiny-transformers` `#embedded-nlp` `#smart-device-ai`  
         | 
| 186 | 
            +
            `#low-latency-models` `#resource-efficient-ai` `#minimal-nlp` `#ai-for-iot`  
         | 
| 187 | 
            +
            `#efficient-bert` `#nlp2025` `#context-aware` `#edge-ml` `#fast-nlp`  
         | 
| 188 | 
            +
            `#ai` `#ml` `#bert` `#google` `#artificial-intelligence` `#machine-learning`  
         | 
| 189 | 
            +
            `#deep-learning` `#natural-language-processing`
         | 
| 190 |  | 
| 191 | 
             
            ---
         | 
| 192 |  | 
|  | |
| 198 |  | 
| 199 | 
             
            ## ๐ Credits
         | 
| 200 |  | 
|  | |
| 201 | 
             
            Base Model: [`google-bert/bert-base-uncased`](https://huggingface.co/google-bert/bert-base-uncased)  
         | 
| 202 | 
             
            Optimized and Quantized for edge AI scenarios.
         | 
| 203 |  | 
