|
|
|
|
|
import argparse |
|
import re |
|
from typing import Dict |
|
|
|
import torch |
|
from datasets import Audio, Dataset, load_dataset, load_metric |
|
|
|
from transformers import ( |
|
AutoConfig, |
|
AutoFeatureExtractor, |
|
AutoModelForCTC, |
|
AutoTokenizer, |
|
Wav2Vec2Processor, |
|
Wav2Vec2ProcessorWithLM, |
|
pipeline, |
|
) |
|
|
|
|
|
def log_results(result: Dataset, args: Dict[str, str]): |
|
""" DO NOT CHANGE. This function computes and logs the result metrics. """ |
|
|
|
log_outputs = args.log_outputs |
|
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) |
|
|
|
|
|
wer = load_metric("wer") |
|
cer = load_metric("cer") |
|
|
|
|
|
wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) |
|
cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) |
|
|
|
|
|
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" |
|
print(result_str) |
|
|
|
with open(f"{dataset_id}_eval_results.txt", "w") as f: |
|
f.write(result_str) |
|
|
|
|
|
if log_outputs is not None: |
|
pred_file = f"log_{dataset_id}_predictions.txt" |
|
target_file = f"log_{dataset_id}_targets.txt" |
|
|
|
with open(pred_file, "w") as p, open(target_file, "w") as t: |
|
|
|
|
|
def write_to_file(batch, i): |
|
p.write(f"{i}" + "\n") |
|
p.write(batch["prediction"] + "\n") |
|
t.write(f"{i}" + "\n") |
|
t.write(batch["target"] + "\n") |
|
|
|
result.map(write_to_file, with_indices=True) |
|
|
|
|
|
def normalize_text(text: str, invalid_chars_regex: str) -> str: |
|
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """ |
|
|
|
text = text.lower() |
|
text = re.sub(r"’|´|′|ʼ|‘|ʻ|`", "'", text) |
|
text = re.sub(invalid_chars_regex, " ", text) |
|
text = re.sub(r"\s+", " ", text).strip() |
|
|
|
return text |
|
|
|
|
|
def main(args): |
|
|
|
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True) |
|
|
|
|
|
|
|
|
|
|
|
if args.greedy: |
|
processor = Wav2Vec2Processor.from_pretrained(args.model_id) |
|
decoder = None |
|
else: |
|
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id) |
|
decoder = processor.decoder |
|
|
|
feature_extractor = processor.feature_extractor |
|
tokenizer = processor.tokenizer |
|
sampling_rate = feature_extractor.sampling_rate |
|
|
|
|
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) |
|
|
|
|
|
if args.device is None: |
|
args.device = 0 if torch.cuda.is_available() else -1 |
|
|
|
config = AutoConfig.from_pretrained(args.model_id) |
|
model = AutoModelForCTC.from_pretrained(args.model_id) |
|
|
|
|
|
asr = pipeline( |
|
"automatic-speech-recognition", |
|
config=config, |
|
model=model, |
|
tokenizer=tokenizer, |
|
feature_extractor=feature_extractor, |
|
decoder=decoder, |
|
device=args.device, |
|
) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_id) |
|
tokens = [x for x in tokenizer.convert_ids_to_tokens(range(0, tokenizer.vocab_size))] |
|
special_tokens = [ |
|
tokenizer.pad_token, |
|
tokenizer.word_delimiter_token, |
|
tokenizer.unk_token, |
|
tokenizer.bos_token, |
|
tokenizer.eos_token, |
|
] |
|
non_special_tokens = [x for x in tokens if x not in special_tokens] |
|
invalid_chars_regex = f"[^\s{re.escape(''.join(set(non_special_tokens)))}]" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def map_to_pred(batch): |
|
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s) |
|
|
|
batch["prediction"] = prediction["text"] |
|
batch["target"] = normalize_text(batch["sentence"], invalid_chars_regex) |
|
return batch |
|
|
|
|
|
result = dataset.map(map_to_pred, remove_columns=dataset.column_names) |
|
|
|
|
|
result = result.filter(lambda example: example["target"] != "") |
|
|
|
|
|
|
|
log_results(result, args) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers") |
|
parser.add_argument( |
|
"--dataset", |
|
type=str, |
|
required=True, |
|
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", |
|
) |
|
parser.add_argument("--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice") |
|
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") |
|
parser.add_argument( |
|
"--chunk_length_s", |
|
type=float, |
|
default=None, |
|
help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds.", |
|
) |
|
parser.add_argument( |
|
"--stride_length_s", |
|
type=float, |
|
default=None, |
|
help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds.", |
|
) |
|
parser.add_argument("--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis.") |
|
parser.add_argument("--greedy", action="store_true", help="If defined, the LM will be ignored during inference.") |
|
parser.add_argument( |
|
"--device", |
|
type=int, |
|
default=None, |
|
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", |
|
) |
|
args = parser.parse_args() |
|
|
|
main(args) |
|
|