all layer trained for every step.
Browse filesn_layers_per_step = -1, last_layer_weight = 1 * model_layers,, prior_layers_weight= 0.85, kl_div_weight = 2, kl_temperature= 10, lr = 1e-6. batch = 42, schedule = cosine
- 1_Pooling/config.json +10 -0
- README.md +627 -0
- added_tokens.json +3 -0
- config.json +35 -0
- config_sentence_transformers.json +10 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +15 -0
- spm.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:314315
|
11 |
+
- loss:AdaptiveLayerLoss
|
12 |
+
- loss:MultipleNegativesRankingLoss
|
13 |
+
base_model: microsoft/deberta-v3-small
|
14 |
+
datasets:
|
15 |
+
- stanfordnlp/snli
|
16 |
+
metrics:
|
17 |
+
- cosine_accuracy
|
18 |
+
- cosine_accuracy_threshold
|
19 |
+
- cosine_f1
|
20 |
+
- cosine_f1_threshold
|
21 |
+
- cosine_precision
|
22 |
+
- cosine_recall
|
23 |
+
- cosine_ap
|
24 |
+
- dot_accuracy
|
25 |
+
- dot_accuracy_threshold
|
26 |
+
- dot_f1
|
27 |
+
- dot_f1_threshold
|
28 |
+
- dot_precision
|
29 |
+
- dot_recall
|
30 |
+
- dot_ap
|
31 |
+
- manhattan_accuracy
|
32 |
+
- manhattan_accuracy_threshold
|
33 |
+
- manhattan_f1
|
34 |
+
- manhattan_f1_threshold
|
35 |
+
- manhattan_precision
|
36 |
+
- manhattan_recall
|
37 |
+
- manhattan_ap
|
38 |
+
- euclidean_accuracy
|
39 |
+
- euclidean_accuracy_threshold
|
40 |
+
- euclidean_f1
|
41 |
+
- euclidean_f1_threshold
|
42 |
+
- euclidean_precision
|
43 |
+
- euclidean_recall
|
44 |
+
- euclidean_ap
|
45 |
+
- max_accuracy
|
46 |
+
- max_accuracy_threshold
|
47 |
+
- max_f1
|
48 |
+
- max_f1_threshold
|
49 |
+
- max_precision
|
50 |
+
- max_recall
|
51 |
+
- max_ap
|
52 |
+
widget:
|
53 |
+
- source_sentence: The pitcher is pitching the ball in a game of baseball.
|
54 |
+
sentences:
|
55 |
+
- the lady digs into the ground
|
56 |
+
- A group of people are sitting at tables.
|
57 |
+
- The pitcher throws the ball.
|
58 |
+
- source_sentence: People are conversing at a dining table under a canopy.
|
59 |
+
sentences:
|
60 |
+
- A canine is using his legs.
|
61 |
+
- The people are creative.
|
62 |
+
- People at a party are seated for dinner on the lawn.
|
63 |
+
- source_sentence: Two teenage girls conversing next to lockers.
|
64 |
+
sentences:
|
65 |
+
- Girls talking about their problems next to lockers.
|
66 |
+
- A group of people play in the ocean.
|
67 |
+
- The man is testing the bike.
|
68 |
+
- source_sentence: A young boy in a hoodie climbs a red slide sitting on a red and
|
69 |
+
green checkered background.
|
70 |
+
sentences:
|
71 |
+
- People are buying food from a street vendor.
|
72 |
+
- A boy is playing.
|
73 |
+
- A dog outside digging.
|
74 |
+
- source_sentence: A professional swimmer spits water out after surfacing while grabbing
|
75 |
+
the hand of someone helping him back to land.
|
76 |
+
sentences:
|
77 |
+
- A group of people wait in a line.
|
78 |
+
- A tourist has his picture taken on Easter Island.
|
79 |
+
- The swimmer almost drowned after being sucked under a fast current.
|
80 |
+
pipeline_tag: sentence-similarity
|
81 |
+
model-index:
|
82 |
+
- name: SentenceTransformer based on microsoft/deberta-v3-small
|
83 |
+
results:
|
84 |
+
- task:
|
85 |
+
type: binary-classification
|
86 |
+
name: Binary Classification
|
87 |
+
dataset:
|
88 |
+
name: Unknown
|
89 |
+
type: unknown
|
90 |
+
metrics:
|
91 |
+
- type: cosine_accuracy
|
92 |
+
value: 0.6578209113655319
|
93 |
+
name: Cosine Accuracy
|
94 |
+
- type: cosine_accuracy_threshold
|
95 |
+
value: 0.7228835821151733
|
96 |
+
name: Cosine Accuracy Threshold
|
97 |
+
- type: cosine_f1
|
98 |
+
value: 0.7058138858173776
|
99 |
+
name: Cosine F1
|
100 |
+
- type: cosine_f1_threshold
|
101 |
+
value: 0.6018929481506348
|
102 |
+
name: Cosine F1 Threshold
|
103 |
+
- type: cosine_precision
|
104 |
+
value: 0.586687306501548
|
105 |
+
name: Cosine Precision
|
106 |
+
- type: cosine_recall
|
107 |
+
value: 0.8856433474514386
|
108 |
+
name: Cosine Recall
|
109 |
+
- type: cosine_ap
|
110 |
+
value: 0.6972177912771047
|
111 |
+
name: Cosine Ap
|
112 |
+
- type: dot_accuracy
|
113 |
+
value: 0.6157403897187049
|
114 |
+
name: Dot Accuracy
|
115 |
+
- type: dot_accuracy_threshold
|
116 |
+
value: 240.6935577392578
|
117 |
+
name: Dot Accuracy Threshold
|
118 |
+
- type: dot_f1
|
119 |
+
value: 0.6994949494949494
|
120 |
+
name: Dot F1
|
121 |
+
- type: dot_f1_threshold
|
122 |
+
value: 180.59024047851562
|
123 |
+
name: Dot F1 Threshold
|
124 |
+
- type: dot_precision
|
125 |
+
value: 0.5603834989884774
|
126 |
+
name: Dot Precision
|
127 |
+
- type: dot_recall
|
128 |
+
value: 0.9304805024098145
|
129 |
+
name: Dot Recall
|
130 |
+
- type: dot_ap
|
131 |
+
value: 0.6228322985998769
|
132 |
+
name: Dot Ap
|
133 |
+
- type: manhattan_accuracy
|
134 |
+
value: 0.6658579118962772
|
135 |
+
name: Manhattan Accuracy
|
136 |
+
- type: manhattan_accuracy_threshold
|
137 |
+
value: 281.63262939453125
|
138 |
+
name: Manhattan Accuracy Threshold
|
139 |
+
- type: manhattan_f1
|
140 |
+
value: 0.7096774193548386
|
141 |
+
name: Manhattan F1
|
142 |
+
- type: manhattan_f1_threshold
|
143 |
+
value: 315.9024658203125
|
144 |
+
name: Manhattan F1 Threshold
|
145 |
+
- type: manhattan_precision
|
146 |
+
value: 0.6168446026097272
|
147 |
+
name: Manhattan Precision
|
148 |
+
- type: manhattan_recall
|
149 |
+
value: 0.8354023659997079
|
150 |
+
name: Manhattan Recall
|
151 |
+
- type: manhattan_ap
|
152 |
+
value: 0.7109579985461502
|
153 |
+
name: Manhattan Ap
|
154 |
+
- type: euclidean_accuracy
|
155 |
+
value: 0.6626734399878687
|
156 |
+
name: Euclidean Accuracy
|
157 |
+
- type: euclidean_accuracy_threshold
|
158 |
+
value: 14.194840431213379
|
159 |
+
name: Euclidean Accuracy Threshold
|
160 |
+
- type: euclidean_f1
|
161 |
+
value: 0.7064288581751448
|
162 |
+
name: Euclidean F1
|
163 |
+
- type: euclidean_f1_threshold
|
164 |
+
value: 17.004133224487305
|
165 |
+
name: Euclidean F1 Threshold
|
166 |
+
- type: euclidean_precision
|
167 |
+
value: 0.581586402266289
|
168 |
+
name: Euclidean Precision
|
169 |
+
- type: euclidean_recall
|
170 |
+
value: 0.8995180370965387
|
171 |
+
name: Euclidean Recall
|
172 |
+
- type: euclidean_ap
|
173 |
+
value: 0.7094433163219231
|
174 |
+
name: Euclidean Ap
|
175 |
+
- type: max_accuracy
|
176 |
+
value: 0.6658579118962772
|
177 |
+
name: Max Accuracy
|
178 |
+
- type: max_accuracy_threshold
|
179 |
+
value: 281.63262939453125
|
180 |
+
name: Max Accuracy Threshold
|
181 |
+
- type: max_f1
|
182 |
+
value: 0.7096774193548386
|
183 |
+
name: Max F1
|
184 |
+
- type: max_f1_threshold
|
185 |
+
value: 315.9024658203125
|
186 |
+
name: Max F1 Threshold
|
187 |
+
- type: max_precision
|
188 |
+
value: 0.6168446026097272
|
189 |
+
name: Max Precision
|
190 |
+
- type: max_recall
|
191 |
+
value: 0.9304805024098145
|
192 |
+
name: Max Recall
|
193 |
+
- type: max_ap
|
194 |
+
value: 0.7109579985461502
|
195 |
+
name: Max Ap
|
196 |
+
---
|
197 |
+
|
198 |
+
# SentenceTransformer based on microsoft/deberta-v3-small
|
199 |
+
|
200 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
201 |
+
|
202 |
+
## Model Details
|
203 |
+
|
204 |
+
### Model Description
|
205 |
+
- **Model Type:** Sentence Transformer
|
206 |
+
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
|
207 |
+
- **Maximum Sequence Length:** 512 tokens
|
208 |
+
- **Output Dimensionality:** 768 tokens
|
209 |
+
- **Similarity Function:** Cosine Similarity
|
210 |
+
- **Training Dataset:**
|
211 |
+
- [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli)
|
212 |
+
- **Language:** en
|
213 |
+
<!-- - **License:** Unknown -->
|
214 |
+
|
215 |
+
### Model Sources
|
216 |
+
|
217 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
218 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
219 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
220 |
+
|
221 |
+
### Full Model Architecture
|
222 |
+
|
223 |
+
```
|
224 |
+
SentenceTransformer(
|
225 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
|
226 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
227 |
+
)
|
228 |
+
```
|
229 |
+
|
230 |
+
## Usage
|
231 |
+
|
232 |
+
### Direct Usage (Sentence Transformers)
|
233 |
+
|
234 |
+
First install the Sentence Transformers library:
|
235 |
+
|
236 |
+
```bash
|
237 |
+
pip install -U sentence-transformers
|
238 |
+
```
|
239 |
+
|
240 |
+
Then you can load this model and run inference.
|
241 |
+
```python
|
242 |
+
from sentence_transformers import SentenceTransformer
|
243 |
+
|
244 |
+
# Download from the 🤗 Hub
|
245 |
+
model = SentenceTransformer("bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm")
|
246 |
+
# Run inference
|
247 |
+
sentences = [
|
248 |
+
'A professional swimmer spits water out after surfacing while grabbing the hand of someone helping him back to land.',
|
249 |
+
'The swimmer almost drowned after being sucked under a fast current.',
|
250 |
+
'A group of people wait in a line.',
|
251 |
+
]
|
252 |
+
embeddings = model.encode(sentences)
|
253 |
+
print(embeddings.shape)
|
254 |
+
# [3, 768]
|
255 |
+
|
256 |
+
# Get the similarity scores for the embeddings
|
257 |
+
similarities = model.similarity(embeddings, embeddings)
|
258 |
+
print(similarities.shape)
|
259 |
+
# [3, 3]
|
260 |
+
```
|
261 |
+
|
262 |
+
<!--
|
263 |
+
### Direct Usage (Transformers)
|
264 |
+
|
265 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
266 |
+
|
267 |
+
</details>
|
268 |
+
-->
|
269 |
+
|
270 |
+
<!--
|
271 |
+
### Downstream Usage (Sentence Transformers)
|
272 |
+
|
273 |
+
You can finetune this model on your own dataset.
|
274 |
+
|
275 |
+
<details><summary>Click to expand</summary>
|
276 |
+
|
277 |
+
</details>
|
278 |
+
-->
|
279 |
+
|
280 |
+
<!--
|
281 |
+
### Out-of-Scope Use
|
282 |
+
|
283 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
284 |
+
-->
|
285 |
+
|
286 |
+
## Evaluation
|
287 |
+
|
288 |
+
### Metrics
|
289 |
+
|
290 |
+
#### Binary Classification
|
291 |
+
|
292 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
293 |
+
|
294 |
+
| Metric | Value |
|
295 |
+
|:-----------------------------|:----------|
|
296 |
+
| cosine_accuracy | 0.6578 |
|
297 |
+
| cosine_accuracy_threshold | 0.7229 |
|
298 |
+
| cosine_f1 | 0.7058 |
|
299 |
+
| cosine_f1_threshold | 0.6019 |
|
300 |
+
| cosine_precision | 0.5867 |
|
301 |
+
| cosine_recall | 0.8856 |
|
302 |
+
| cosine_ap | 0.6972 |
|
303 |
+
| dot_accuracy | 0.6157 |
|
304 |
+
| dot_accuracy_threshold | 240.6936 |
|
305 |
+
| dot_f1 | 0.6995 |
|
306 |
+
| dot_f1_threshold | 180.5902 |
|
307 |
+
| dot_precision | 0.5604 |
|
308 |
+
| dot_recall | 0.9305 |
|
309 |
+
| dot_ap | 0.6228 |
|
310 |
+
| manhattan_accuracy | 0.6659 |
|
311 |
+
| manhattan_accuracy_threshold | 281.6326 |
|
312 |
+
| manhattan_f1 | 0.7097 |
|
313 |
+
| manhattan_f1_threshold | 315.9025 |
|
314 |
+
| manhattan_precision | 0.6168 |
|
315 |
+
| manhattan_recall | 0.8354 |
|
316 |
+
| manhattan_ap | 0.711 |
|
317 |
+
| euclidean_accuracy | 0.6627 |
|
318 |
+
| euclidean_accuracy_threshold | 14.1948 |
|
319 |
+
| euclidean_f1 | 0.7064 |
|
320 |
+
| euclidean_f1_threshold | 17.0041 |
|
321 |
+
| euclidean_precision | 0.5816 |
|
322 |
+
| euclidean_recall | 0.8995 |
|
323 |
+
| euclidean_ap | 0.7094 |
|
324 |
+
| max_accuracy | 0.6659 |
|
325 |
+
| max_accuracy_threshold | 281.6326 |
|
326 |
+
| max_f1 | 0.7097 |
|
327 |
+
| max_f1_threshold | 315.9025 |
|
328 |
+
| max_precision | 0.6168 |
|
329 |
+
| max_recall | 0.9305 |
|
330 |
+
| **max_ap** | **0.711** |
|
331 |
+
|
332 |
+
<!--
|
333 |
+
## Bias, Risks and Limitations
|
334 |
+
|
335 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
336 |
+
-->
|
337 |
+
|
338 |
+
<!--
|
339 |
+
### Recommendations
|
340 |
+
|
341 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
342 |
+
-->
|
343 |
+
|
344 |
+
## Training Details
|
345 |
+
|
346 |
+
### Training Dataset
|
347 |
+
|
348 |
+
#### stanfordnlp/snli
|
349 |
+
|
350 |
+
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
|
351 |
+
* Size: 314,315 training samples
|
352 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
353 |
+
* Approximate statistics based on the first 1000 samples:
|
354 |
+
| | sentence1 | sentence2 | label |
|
355 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
|
356 |
+
| type | string | string | int |
|
357 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 16.62 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.46 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
|
358 |
+
* Samples:
|
359 |
+
| sentence1 | sentence2 | label |
|
360 |
+
|:---------------------------------------------------------------------------|:-------------------------------------------------|:---------------|
|
361 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
|
362 |
+
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>0</code> |
|
363 |
+
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>0</code> |
|
364 |
+
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
|
365 |
+
```json
|
366 |
+
{
|
367 |
+
"loss": "MultipleNegativesRankingLoss",
|
368 |
+
"n_layers_per_step": -1,
|
369 |
+
"last_layer_weight": 6,
|
370 |
+
"prior_layers_weight": 0.85,
|
371 |
+
"kl_div_weight": 2,
|
372 |
+
"kl_temperature": 10
|
373 |
+
}
|
374 |
+
```
|
375 |
+
|
376 |
+
### Evaluation Dataset
|
377 |
+
|
378 |
+
#### stanfordnlp/snli
|
379 |
+
|
380 |
+
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
|
381 |
+
* Size: 13,189 evaluation samples
|
382 |
+
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
383 |
+
* Approximate statistics based on the first 1000 samples:
|
384 |
+
| | premise | hypothesis | label |
|
385 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
386 |
+
| type | string | string | int |
|
387 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 17.28 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.53 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>0: ~48.70%</li><li>1: ~51.30%</li></ul> |
|
388 |
+
* Samples:
|
389 |
+
| premise | hypothesis | label |
|
390 |
+
|:--------------------------------------------------------------------------------------------------------|:---------------------------------------------------|:---------------|
|
391 |
+
| <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church has cracks in the ceiling.</code> | <code>0</code> |
|
392 |
+
| <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church is filled with song.</code> | <code>1</code> |
|
393 |
+
| <code>A woman with a green headscarf, blue shirt and a very big grin.</code> | <code>The woman is young.</code> | <code>0</code> |
|
394 |
+
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
|
395 |
+
```json
|
396 |
+
{
|
397 |
+
"loss": "MultipleNegativesRankingLoss",
|
398 |
+
"n_layers_per_step": -1,
|
399 |
+
"last_layer_weight": 6,
|
400 |
+
"prior_layers_weight": 0.85,
|
401 |
+
"kl_div_weight": 2,
|
402 |
+
"kl_temperature": 10
|
403 |
+
}
|
404 |
+
```
|
405 |
+
|
406 |
+
### Training Hyperparameters
|
407 |
+
#### Non-Default Hyperparameters
|
408 |
+
|
409 |
+
- `eval_strategy`: steps
|
410 |
+
- `per_device_train_batch_size`: 42
|
411 |
+
- `per_device_eval_batch_size`: 32
|
412 |
+
- `learning_rate`: 1e-06
|
413 |
+
- `weight_decay`: 1e-08
|
414 |
+
- `num_train_epochs`: 1
|
415 |
+
- `lr_scheduler_type`: cosine
|
416 |
+
- `warmup_ratio`: 0.2
|
417 |
+
- `save_safetensors`: False
|
418 |
+
- `fp16`: True
|
419 |
+
- `hub_model_id`: bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm-tmp
|
420 |
+
- `hub_strategy`: checkpoint
|
421 |
+
- `batch_sampler`: no_duplicates
|
422 |
+
|
423 |
+
#### All Hyperparameters
|
424 |
+
<details><summary>Click to expand</summary>
|
425 |
+
|
426 |
+
- `overwrite_output_dir`: False
|
427 |
+
- `do_predict`: False
|
428 |
+
- `eval_strategy`: steps
|
429 |
+
- `prediction_loss_only`: True
|
430 |
+
- `per_device_train_batch_size`: 42
|
431 |
+
- `per_device_eval_batch_size`: 32
|
432 |
+
- `per_gpu_train_batch_size`: None
|
433 |
+
- `per_gpu_eval_batch_size`: None
|
434 |
+
- `gradient_accumulation_steps`: 1
|
435 |
+
- `eval_accumulation_steps`: None
|
436 |
+
- `learning_rate`: 1e-06
|
437 |
+
- `weight_decay`: 1e-08
|
438 |
+
- `adam_beta1`: 0.9
|
439 |
+
- `adam_beta2`: 0.999
|
440 |
+
- `adam_epsilon`: 1e-08
|
441 |
+
- `max_grad_norm`: 1.0
|
442 |
+
- `num_train_epochs`: 1
|
443 |
+
- `max_steps`: -1
|
444 |
+
- `lr_scheduler_type`: cosine
|
445 |
+
- `lr_scheduler_kwargs`: {}
|
446 |
+
- `warmup_ratio`: 0.2
|
447 |
+
- `warmup_steps`: 0
|
448 |
+
- `log_level`: passive
|
449 |
+
- `log_level_replica`: warning
|
450 |
+
- `log_on_each_node`: True
|
451 |
+
- `logging_nan_inf_filter`: True
|
452 |
+
- `save_safetensors`: False
|
453 |
+
- `save_on_each_node`: False
|
454 |
+
- `save_only_model`: False
|
455 |
+
- `restore_callback_states_from_checkpoint`: False
|
456 |
+
- `no_cuda`: False
|
457 |
+
- `use_cpu`: False
|
458 |
+
- `use_mps_device`: False
|
459 |
+
- `seed`: 42
|
460 |
+
- `data_seed`: None
|
461 |
+
- `jit_mode_eval`: False
|
462 |
+
- `use_ipex`: False
|
463 |
+
- `bf16`: False
|
464 |
+
- `fp16`: True
|
465 |
+
- `fp16_opt_level`: O1
|
466 |
+
- `half_precision_backend`: auto
|
467 |
+
- `bf16_full_eval`: False
|
468 |
+
- `fp16_full_eval`: False
|
469 |
+
- `tf32`: None
|
470 |
+
- `local_rank`: 0
|
471 |
+
- `ddp_backend`: None
|
472 |
+
- `tpu_num_cores`: None
|
473 |
+
- `tpu_metrics_debug`: False
|
474 |
+
- `debug`: []
|
475 |
+
- `dataloader_drop_last`: False
|
476 |
+
- `dataloader_num_workers`: 0
|
477 |
+
- `dataloader_prefetch_factor`: None
|
478 |
+
- `past_index`: -1
|
479 |
+
- `disable_tqdm`: False
|
480 |
+
- `remove_unused_columns`: True
|
481 |
+
- `label_names`: None
|
482 |
+
- `load_best_model_at_end`: False
|
483 |
+
- `ignore_data_skip`: False
|
484 |
+
- `fsdp`: []
|
485 |
+
- `fsdp_min_num_params`: 0
|
486 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
487 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
488 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
489 |
+
- `deepspeed`: None
|
490 |
+
- `label_smoothing_factor`: 0.0
|
491 |
+
- `optim`: adamw_torch
|
492 |
+
- `optim_args`: None
|
493 |
+
- `adafactor`: False
|
494 |
+
- `group_by_length`: False
|
495 |
+
- `length_column_name`: length
|
496 |
+
- `ddp_find_unused_parameters`: None
|
497 |
+
- `ddp_bucket_cap_mb`: None
|
498 |
+
- `ddp_broadcast_buffers`: False
|
499 |
+
- `dataloader_pin_memory`: True
|
500 |
+
- `dataloader_persistent_workers`: False
|
501 |
+
- `skip_memory_metrics`: True
|
502 |
+
- `use_legacy_prediction_loop`: False
|
503 |
+
- `push_to_hub`: False
|
504 |
+
- `resume_from_checkpoint`: None
|
505 |
+
- `hub_model_id`: bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm-tmp
|
506 |
+
- `hub_strategy`: checkpoint
|
507 |
+
- `hub_private_repo`: False
|
508 |
+
- `hub_always_push`: False
|
509 |
+
- `gradient_checkpointing`: False
|
510 |
+
- `gradient_checkpointing_kwargs`: None
|
511 |
+
- `include_inputs_for_metrics`: False
|
512 |
+
- `eval_do_concat_batches`: True
|
513 |
+
- `fp16_backend`: auto
|
514 |
+
- `push_to_hub_model_id`: None
|
515 |
+
- `push_to_hub_organization`: None
|
516 |
+
- `mp_parameters`:
|
517 |
+
- `auto_find_batch_size`: False
|
518 |
+
- `full_determinism`: False
|
519 |
+
- `torchdynamo`: None
|
520 |
+
- `ray_scope`: last
|
521 |
+
- `ddp_timeout`: 1800
|
522 |
+
- `torch_compile`: False
|
523 |
+
- `torch_compile_backend`: None
|
524 |
+
- `torch_compile_mode`: None
|
525 |
+
- `dispatch_batches`: None
|
526 |
+
- `split_batches`: None
|
527 |
+
- `include_tokens_per_second`: False
|
528 |
+
- `include_num_input_tokens_seen`: False
|
529 |
+
- `neftune_noise_alpha`: None
|
530 |
+
- `optim_target_modules`: None
|
531 |
+
- `batch_eval_metrics`: False
|
532 |
+
- `batch_sampler`: no_duplicates
|
533 |
+
- `multi_dataset_batch_sampler`: proportional
|
534 |
+
|
535 |
+
</details>
|
536 |
+
|
537 |
+
### Training Logs
|
538 |
+
| Epoch | Step | Training Loss | loss | max_ap |
|
539 |
+
|:------:|:----:|:-------------:|:-------:|:------:|
|
540 |
+
| 0.0501 | 375 | 23.8735 | 21.0352 | 0.6131 |
|
541 |
+
| 0.1002 | 750 | 22.4091 | 19.6992 | 0.6353 |
|
542 |
+
| 0.1503 | 1125 | 19.4663 | 16.2104 | 0.6580 |
|
543 |
+
| 0.2004 | 1500 | 15.348 | 13.2038 | 0.6732 |
|
544 |
+
| 0.2505 | 1875 | 12.5377 | 11.6357 | 0.6815 |
|
545 |
+
| 0.3006 | 2250 | 11.4576 | 10.7570 | 0.6862 |
|
546 |
+
| 0.3507 | 2625 | 10.7446 | 10.1819 | 0.6891 |
|
547 |
+
| 0.4009 | 3000 | 10.2323 | 9.7470 | 0.6904 |
|
548 |
+
| 0.4510 | 3375 | 9.9825 | 9.4256 | 0.6914 |
|
549 |
+
| 0.5011 | 3750 | 9.6954 | 9.2200 | 0.6923 |
|
550 |
+
| 0.5512 | 4125 | 9.6359 | 9.0367 | 0.6923 |
|
551 |
+
| 0.6013 | 4500 | 8.3103 | 7.8258 | 0.7026 |
|
552 |
+
| 0.6514 | 4875 | 4.4845 | 7.4044 | 0.7073 |
|
553 |
+
| 0.7015 | 5250 | 3.8303 | 7.2647 | 0.7092 |
|
554 |
+
| 0.7516 | 5625 | 3.5617 | 7.2020 | 0.7098 |
|
555 |
+
| 0.8017 | 6000 | 3.4088 | 7.1684 | 0.7103 |
|
556 |
+
| 0.8518 | 6375 | 3.347 | 7.1531 | 0.7108 |
|
557 |
+
| 0.9019 | 6750 | 3.2064 | 7.1451 | 0.7109 |
|
558 |
+
| 0.9520 | 7125 | 3.3096 | 7.1427 | 0.7110 |
|
559 |
+
|
560 |
+
|
561 |
+
### Framework Versions
|
562 |
+
- Python: 3.10.13
|
563 |
+
- Sentence Transformers: 3.0.1
|
564 |
+
- Transformers: 4.41.2
|
565 |
+
- PyTorch: 2.1.2
|
566 |
+
- Accelerate: 0.30.1
|
567 |
+
- Datasets: 2.19.2
|
568 |
+
- Tokenizers: 0.19.1
|
569 |
+
|
570 |
+
## Citation
|
571 |
+
|
572 |
+
### BibTeX
|
573 |
+
|
574 |
+
#### Sentence Transformers
|
575 |
+
```bibtex
|
576 |
+
@inproceedings{reimers-2019-sentence-bert,
|
577 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
578 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
579 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
580 |
+
month = "11",
|
581 |
+
year = "2019",
|
582 |
+
publisher = "Association for Computational Linguistics",
|
583 |
+
url = "https://arxiv.org/abs/1908.10084",
|
584 |
+
}
|
585 |
+
```
|
586 |
+
|
587 |
+
#### AdaptiveLayerLoss
|
588 |
+
```bibtex
|
589 |
+
@misc{li20242d,
|
590 |
+
title={2D Matryoshka Sentence Embeddings},
|
591 |
+
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
|
592 |
+
year={2024},
|
593 |
+
eprint={2402.14776},
|
594 |
+
archivePrefix={arXiv},
|
595 |
+
primaryClass={cs.CL}
|
596 |
+
}
|
597 |
+
```
|
598 |
+
|
599 |
+
#### MultipleNegativesRankingLoss
|
600 |
+
```bibtex
|
601 |
+
@misc{henderson2017efficient,
|
602 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
603 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
604 |
+
year={2017},
|
605 |
+
eprint={1705.00652},
|
606 |
+
archivePrefix={arXiv},
|
607 |
+
primaryClass={cs.CL}
|
608 |
+
}
|
609 |
+
```
|
610 |
+
|
611 |
+
<!--
|
612 |
+
## Glossary
|
613 |
+
|
614 |
+
*Clearly define terms in order to be accessible across audiences.*
|
615 |
+
-->
|
616 |
+
|
617 |
+
<!--
|
618 |
+
## Model Card Authors
|
619 |
+
|
620 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
621 |
+
-->
|
622 |
+
|
623 |
+
<!--
|
624 |
+
## Model Card Contact
|
625 |
+
|
626 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
627 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[MASK]": 128000
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/deberta-v3-small",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2Model"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-07,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"max_relative_positions": -1,
|
15 |
+
"model_type": "deberta-v2",
|
16 |
+
"norm_rel_ebd": "layer_norm",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_dropout": 0,
|
21 |
+
"pooler_hidden_act": "gelu",
|
22 |
+
"pooler_hidden_size": 768,
|
23 |
+
"pos_att_type": [
|
24 |
+
"p2c",
|
25 |
+
"c2p"
|
26 |
+
],
|
27 |
+
"position_biased_input": false,
|
28 |
+
"position_buckets": 256,
|
29 |
+
"relative_attention": true,
|
30 |
+
"share_att_key": true,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.41.2",
|
33 |
+
"type_vocab_size": 0,
|
34 |
+
"vocab_size": 128100
|
35 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.1.2"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a551670eeb8299ed00f95f4ee307f9154b6ae648814ea98b25ddd71819fc7a1c
|
3 |
+
size 565251810
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": {
|
9 |
+
"content": "[UNK]",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": true,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
}
|
15 |
+
}
|
spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128000": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": false,
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"split_by_punct": false,
|
55 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
56 |
+
"unk_token": "[UNK]",
|
57 |
+
"vocab_type": "spm"
|
58 |
+
}
|