bobox commited on
Commit
bac37d8
1 Parent(s): 3c21fd7

all layer trained for every step.

Browse files

n_layers_per_step = -1, last_layer_weight = 1 * model_layers,, prior_layers_weight= 0.85, kl_div_weight = 2, kl_temperature= 10, lr = 1e-6. batch = 42, schedule = cosine

1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,627 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:314315
11
+ - loss:AdaptiveLayerLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: microsoft/deberta-v3-small
14
+ datasets:
15
+ - stanfordnlp/snli
16
+ metrics:
17
+ - cosine_accuracy
18
+ - cosine_accuracy_threshold
19
+ - cosine_f1
20
+ - cosine_f1_threshold
21
+ - cosine_precision
22
+ - cosine_recall
23
+ - cosine_ap
24
+ - dot_accuracy
25
+ - dot_accuracy_threshold
26
+ - dot_f1
27
+ - dot_f1_threshold
28
+ - dot_precision
29
+ - dot_recall
30
+ - dot_ap
31
+ - manhattan_accuracy
32
+ - manhattan_accuracy_threshold
33
+ - manhattan_f1
34
+ - manhattan_f1_threshold
35
+ - manhattan_precision
36
+ - manhattan_recall
37
+ - manhattan_ap
38
+ - euclidean_accuracy
39
+ - euclidean_accuracy_threshold
40
+ - euclidean_f1
41
+ - euclidean_f1_threshold
42
+ - euclidean_precision
43
+ - euclidean_recall
44
+ - euclidean_ap
45
+ - max_accuracy
46
+ - max_accuracy_threshold
47
+ - max_f1
48
+ - max_f1_threshold
49
+ - max_precision
50
+ - max_recall
51
+ - max_ap
52
+ widget:
53
+ - source_sentence: The pitcher is pitching the ball in a game of baseball.
54
+ sentences:
55
+ - the lady digs into the ground
56
+ - A group of people are sitting at tables.
57
+ - The pitcher throws the ball.
58
+ - source_sentence: People are conversing at a dining table under a canopy.
59
+ sentences:
60
+ - A canine is using his legs.
61
+ - The people are creative.
62
+ - People at a party are seated for dinner on the lawn.
63
+ - source_sentence: Two teenage girls conversing next to lockers.
64
+ sentences:
65
+ - Girls talking about their problems next to lockers.
66
+ - A group of people play in the ocean.
67
+ - The man is testing the bike.
68
+ - source_sentence: A young boy in a hoodie climbs a red slide sitting on a red and
69
+ green checkered background.
70
+ sentences:
71
+ - People are buying food from a street vendor.
72
+ - A boy is playing.
73
+ - A dog outside digging.
74
+ - source_sentence: A professional swimmer spits water out after surfacing while grabbing
75
+ the hand of someone helping him back to land.
76
+ sentences:
77
+ - A group of people wait in a line.
78
+ - A tourist has his picture taken on Easter Island.
79
+ - The swimmer almost drowned after being sucked under a fast current.
80
+ pipeline_tag: sentence-similarity
81
+ model-index:
82
+ - name: SentenceTransformer based on microsoft/deberta-v3-small
83
+ results:
84
+ - task:
85
+ type: binary-classification
86
+ name: Binary Classification
87
+ dataset:
88
+ name: Unknown
89
+ type: unknown
90
+ metrics:
91
+ - type: cosine_accuracy
92
+ value: 0.6578209113655319
93
+ name: Cosine Accuracy
94
+ - type: cosine_accuracy_threshold
95
+ value: 0.7228835821151733
96
+ name: Cosine Accuracy Threshold
97
+ - type: cosine_f1
98
+ value: 0.7058138858173776
99
+ name: Cosine F1
100
+ - type: cosine_f1_threshold
101
+ value: 0.6018929481506348
102
+ name: Cosine F1 Threshold
103
+ - type: cosine_precision
104
+ value: 0.586687306501548
105
+ name: Cosine Precision
106
+ - type: cosine_recall
107
+ value: 0.8856433474514386
108
+ name: Cosine Recall
109
+ - type: cosine_ap
110
+ value: 0.6972177912771047
111
+ name: Cosine Ap
112
+ - type: dot_accuracy
113
+ value: 0.6157403897187049
114
+ name: Dot Accuracy
115
+ - type: dot_accuracy_threshold
116
+ value: 240.6935577392578
117
+ name: Dot Accuracy Threshold
118
+ - type: dot_f1
119
+ value: 0.6994949494949494
120
+ name: Dot F1
121
+ - type: dot_f1_threshold
122
+ value: 180.59024047851562
123
+ name: Dot F1 Threshold
124
+ - type: dot_precision
125
+ value: 0.5603834989884774
126
+ name: Dot Precision
127
+ - type: dot_recall
128
+ value: 0.9304805024098145
129
+ name: Dot Recall
130
+ - type: dot_ap
131
+ value: 0.6228322985998769
132
+ name: Dot Ap
133
+ - type: manhattan_accuracy
134
+ value: 0.6658579118962772
135
+ name: Manhattan Accuracy
136
+ - type: manhattan_accuracy_threshold
137
+ value: 281.63262939453125
138
+ name: Manhattan Accuracy Threshold
139
+ - type: manhattan_f1
140
+ value: 0.7096774193548386
141
+ name: Manhattan F1
142
+ - type: manhattan_f1_threshold
143
+ value: 315.9024658203125
144
+ name: Manhattan F1 Threshold
145
+ - type: manhattan_precision
146
+ value: 0.6168446026097272
147
+ name: Manhattan Precision
148
+ - type: manhattan_recall
149
+ value: 0.8354023659997079
150
+ name: Manhattan Recall
151
+ - type: manhattan_ap
152
+ value: 0.7109579985461502
153
+ name: Manhattan Ap
154
+ - type: euclidean_accuracy
155
+ value: 0.6626734399878687
156
+ name: Euclidean Accuracy
157
+ - type: euclidean_accuracy_threshold
158
+ value: 14.194840431213379
159
+ name: Euclidean Accuracy Threshold
160
+ - type: euclidean_f1
161
+ value: 0.7064288581751448
162
+ name: Euclidean F1
163
+ - type: euclidean_f1_threshold
164
+ value: 17.004133224487305
165
+ name: Euclidean F1 Threshold
166
+ - type: euclidean_precision
167
+ value: 0.581586402266289
168
+ name: Euclidean Precision
169
+ - type: euclidean_recall
170
+ value: 0.8995180370965387
171
+ name: Euclidean Recall
172
+ - type: euclidean_ap
173
+ value: 0.7094433163219231
174
+ name: Euclidean Ap
175
+ - type: max_accuracy
176
+ value: 0.6658579118962772
177
+ name: Max Accuracy
178
+ - type: max_accuracy_threshold
179
+ value: 281.63262939453125
180
+ name: Max Accuracy Threshold
181
+ - type: max_f1
182
+ value: 0.7096774193548386
183
+ name: Max F1
184
+ - type: max_f1_threshold
185
+ value: 315.9024658203125
186
+ name: Max F1 Threshold
187
+ - type: max_precision
188
+ value: 0.6168446026097272
189
+ name: Max Precision
190
+ - type: max_recall
191
+ value: 0.9304805024098145
192
+ name: Max Recall
193
+ - type: max_ap
194
+ value: 0.7109579985461502
195
+ name: Max Ap
196
+ ---
197
+
198
+ # SentenceTransformer based on microsoft/deberta-v3-small
199
+
200
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
201
+
202
+ ## Model Details
203
+
204
+ ### Model Description
205
+ - **Model Type:** Sentence Transformer
206
+ - **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
207
+ - **Maximum Sequence Length:** 512 tokens
208
+ - **Output Dimensionality:** 768 tokens
209
+ - **Similarity Function:** Cosine Similarity
210
+ - **Training Dataset:**
211
+ - [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli)
212
+ - **Language:** en
213
+ <!-- - **License:** Unknown -->
214
+
215
+ ### Model Sources
216
+
217
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
218
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
219
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
220
+
221
+ ### Full Model Architecture
222
+
223
+ ```
224
+ SentenceTransformer(
225
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
226
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
227
+ )
228
+ ```
229
+
230
+ ## Usage
231
+
232
+ ### Direct Usage (Sentence Transformers)
233
+
234
+ First install the Sentence Transformers library:
235
+
236
+ ```bash
237
+ pip install -U sentence-transformers
238
+ ```
239
+
240
+ Then you can load this model and run inference.
241
+ ```python
242
+ from sentence_transformers import SentenceTransformer
243
+
244
+ # Download from the 🤗 Hub
245
+ model = SentenceTransformer("bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm")
246
+ # Run inference
247
+ sentences = [
248
+ 'A professional swimmer spits water out after surfacing while grabbing the hand of someone helping him back to land.',
249
+ 'The swimmer almost drowned after being sucked under a fast current.',
250
+ 'A group of people wait in a line.',
251
+ ]
252
+ embeddings = model.encode(sentences)
253
+ print(embeddings.shape)
254
+ # [3, 768]
255
+
256
+ # Get the similarity scores for the embeddings
257
+ similarities = model.similarity(embeddings, embeddings)
258
+ print(similarities.shape)
259
+ # [3, 3]
260
+ ```
261
+
262
+ <!--
263
+ ### Direct Usage (Transformers)
264
+
265
+ <details><summary>Click to see the direct usage in Transformers</summary>
266
+
267
+ </details>
268
+ -->
269
+
270
+ <!--
271
+ ### Downstream Usage (Sentence Transformers)
272
+
273
+ You can finetune this model on your own dataset.
274
+
275
+ <details><summary>Click to expand</summary>
276
+
277
+ </details>
278
+ -->
279
+
280
+ <!--
281
+ ### Out-of-Scope Use
282
+
283
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
284
+ -->
285
+
286
+ ## Evaluation
287
+
288
+ ### Metrics
289
+
290
+ #### Binary Classification
291
+
292
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
293
+
294
+ | Metric | Value |
295
+ |:-----------------------------|:----------|
296
+ | cosine_accuracy | 0.6578 |
297
+ | cosine_accuracy_threshold | 0.7229 |
298
+ | cosine_f1 | 0.7058 |
299
+ | cosine_f1_threshold | 0.6019 |
300
+ | cosine_precision | 0.5867 |
301
+ | cosine_recall | 0.8856 |
302
+ | cosine_ap | 0.6972 |
303
+ | dot_accuracy | 0.6157 |
304
+ | dot_accuracy_threshold | 240.6936 |
305
+ | dot_f1 | 0.6995 |
306
+ | dot_f1_threshold | 180.5902 |
307
+ | dot_precision | 0.5604 |
308
+ | dot_recall | 0.9305 |
309
+ | dot_ap | 0.6228 |
310
+ | manhattan_accuracy | 0.6659 |
311
+ | manhattan_accuracy_threshold | 281.6326 |
312
+ | manhattan_f1 | 0.7097 |
313
+ | manhattan_f1_threshold | 315.9025 |
314
+ | manhattan_precision | 0.6168 |
315
+ | manhattan_recall | 0.8354 |
316
+ | manhattan_ap | 0.711 |
317
+ | euclidean_accuracy | 0.6627 |
318
+ | euclidean_accuracy_threshold | 14.1948 |
319
+ | euclidean_f1 | 0.7064 |
320
+ | euclidean_f1_threshold | 17.0041 |
321
+ | euclidean_precision | 0.5816 |
322
+ | euclidean_recall | 0.8995 |
323
+ | euclidean_ap | 0.7094 |
324
+ | max_accuracy | 0.6659 |
325
+ | max_accuracy_threshold | 281.6326 |
326
+ | max_f1 | 0.7097 |
327
+ | max_f1_threshold | 315.9025 |
328
+ | max_precision | 0.6168 |
329
+ | max_recall | 0.9305 |
330
+ | **max_ap** | **0.711** |
331
+
332
+ <!--
333
+ ## Bias, Risks and Limitations
334
+
335
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
336
+ -->
337
+
338
+ <!--
339
+ ### Recommendations
340
+
341
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
342
+ -->
343
+
344
+ ## Training Details
345
+
346
+ ### Training Dataset
347
+
348
+ #### stanfordnlp/snli
349
+
350
+ * Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
351
+ * Size: 314,315 training samples
352
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
353
+ * Approximate statistics based on the first 1000 samples:
354
+ | | sentence1 | sentence2 | label |
355
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
356
+ | type | string | string | int |
357
+ | details | <ul><li>min: 5 tokens</li><li>mean: 16.62 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.46 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
358
+ * Samples:
359
+ | sentence1 | sentence2 | label |
360
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:---------------|
361
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
362
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>0</code> |
363
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>0</code> |
364
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
365
+ ```json
366
+ {
367
+ "loss": "MultipleNegativesRankingLoss",
368
+ "n_layers_per_step": -1,
369
+ "last_layer_weight": 6,
370
+ "prior_layers_weight": 0.85,
371
+ "kl_div_weight": 2,
372
+ "kl_temperature": 10
373
+ }
374
+ ```
375
+
376
+ ### Evaluation Dataset
377
+
378
+ #### stanfordnlp/snli
379
+
380
+ * Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
381
+ * Size: 13,189 evaluation samples
382
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
383
+ * Approximate statistics based on the first 1000 samples:
384
+ | | premise | hypothesis | label |
385
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
386
+ | type | string | string | int |
387
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.28 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.53 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>0: ~48.70%</li><li>1: ~51.30%</li></ul> |
388
+ * Samples:
389
+ | premise | hypothesis | label |
390
+ |:--------------------------------------------------------------------------------------------------------|:---------------------------------------------------|:---------------|
391
+ | <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church has cracks in the ceiling.</code> | <code>0</code> |
392
+ | <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church is filled with song.</code> | <code>1</code> |
393
+ | <code>A woman with a green headscarf, blue shirt and a very big grin.</code> | <code>The woman is young.</code> | <code>0</code> |
394
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
395
+ ```json
396
+ {
397
+ "loss": "MultipleNegativesRankingLoss",
398
+ "n_layers_per_step": -1,
399
+ "last_layer_weight": 6,
400
+ "prior_layers_weight": 0.85,
401
+ "kl_div_weight": 2,
402
+ "kl_temperature": 10
403
+ }
404
+ ```
405
+
406
+ ### Training Hyperparameters
407
+ #### Non-Default Hyperparameters
408
+
409
+ - `eval_strategy`: steps
410
+ - `per_device_train_batch_size`: 42
411
+ - `per_device_eval_batch_size`: 32
412
+ - `learning_rate`: 1e-06
413
+ - `weight_decay`: 1e-08
414
+ - `num_train_epochs`: 1
415
+ - `lr_scheduler_type`: cosine
416
+ - `warmup_ratio`: 0.2
417
+ - `save_safetensors`: False
418
+ - `fp16`: True
419
+ - `hub_model_id`: bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm-tmp
420
+ - `hub_strategy`: checkpoint
421
+ - `batch_sampler`: no_duplicates
422
+
423
+ #### All Hyperparameters
424
+ <details><summary>Click to expand</summary>
425
+
426
+ - `overwrite_output_dir`: False
427
+ - `do_predict`: False
428
+ - `eval_strategy`: steps
429
+ - `prediction_loss_only`: True
430
+ - `per_device_train_batch_size`: 42
431
+ - `per_device_eval_batch_size`: 32
432
+ - `per_gpu_train_batch_size`: None
433
+ - `per_gpu_eval_batch_size`: None
434
+ - `gradient_accumulation_steps`: 1
435
+ - `eval_accumulation_steps`: None
436
+ - `learning_rate`: 1e-06
437
+ - `weight_decay`: 1e-08
438
+ - `adam_beta1`: 0.9
439
+ - `adam_beta2`: 0.999
440
+ - `adam_epsilon`: 1e-08
441
+ - `max_grad_norm`: 1.0
442
+ - `num_train_epochs`: 1
443
+ - `max_steps`: -1
444
+ - `lr_scheduler_type`: cosine
445
+ - `lr_scheduler_kwargs`: {}
446
+ - `warmup_ratio`: 0.2
447
+ - `warmup_steps`: 0
448
+ - `log_level`: passive
449
+ - `log_level_replica`: warning
450
+ - `log_on_each_node`: True
451
+ - `logging_nan_inf_filter`: True
452
+ - `save_safetensors`: False
453
+ - `save_on_each_node`: False
454
+ - `save_only_model`: False
455
+ - `restore_callback_states_from_checkpoint`: False
456
+ - `no_cuda`: False
457
+ - `use_cpu`: False
458
+ - `use_mps_device`: False
459
+ - `seed`: 42
460
+ - `data_seed`: None
461
+ - `jit_mode_eval`: False
462
+ - `use_ipex`: False
463
+ - `bf16`: False
464
+ - `fp16`: True
465
+ - `fp16_opt_level`: O1
466
+ - `half_precision_backend`: auto
467
+ - `bf16_full_eval`: False
468
+ - `fp16_full_eval`: False
469
+ - `tf32`: None
470
+ - `local_rank`: 0
471
+ - `ddp_backend`: None
472
+ - `tpu_num_cores`: None
473
+ - `tpu_metrics_debug`: False
474
+ - `debug`: []
475
+ - `dataloader_drop_last`: False
476
+ - `dataloader_num_workers`: 0
477
+ - `dataloader_prefetch_factor`: None
478
+ - `past_index`: -1
479
+ - `disable_tqdm`: False
480
+ - `remove_unused_columns`: True
481
+ - `label_names`: None
482
+ - `load_best_model_at_end`: False
483
+ - `ignore_data_skip`: False
484
+ - `fsdp`: []
485
+ - `fsdp_min_num_params`: 0
486
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
487
+ - `fsdp_transformer_layer_cls_to_wrap`: None
488
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
489
+ - `deepspeed`: None
490
+ - `label_smoothing_factor`: 0.0
491
+ - `optim`: adamw_torch
492
+ - `optim_args`: None
493
+ - `adafactor`: False
494
+ - `group_by_length`: False
495
+ - `length_column_name`: length
496
+ - `ddp_find_unused_parameters`: None
497
+ - `ddp_bucket_cap_mb`: None
498
+ - `ddp_broadcast_buffers`: False
499
+ - `dataloader_pin_memory`: True
500
+ - `dataloader_persistent_workers`: False
501
+ - `skip_memory_metrics`: True
502
+ - `use_legacy_prediction_loop`: False
503
+ - `push_to_hub`: False
504
+ - `resume_from_checkpoint`: None
505
+ - `hub_model_id`: bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm-tmp
506
+ - `hub_strategy`: checkpoint
507
+ - `hub_private_repo`: False
508
+ - `hub_always_push`: False
509
+ - `gradient_checkpointing`: False
510
+ - `gradient_checkpointing_kwargs`: None
511
+ - `include_inputs_for_metrics`: False
512
+ - `eval_do_concat_batches`: True
513
+ - `fp16_backend`: auto
514
+ - `push_to_hub_model_id`: None
515
+ - `push_to_hub_organization`: None
516
+ - `mp_parameters`:
517
+ - `auto_find_batch_size`: False
518
+ - `full_determinism`: False
519
+ - `torchdynamo`: None
520
+ - `ray_scope`: last
521
+ - `ddp_timeout`: 1800
522
+ - `torch_compile`: False
523
+ - `torch_compile_backend`: None
524
+ - `torch_compile_mode`: None
525
+ - `dispatch_batches`: None
526
+ - `split_batches`: None
527
+ - `include_tokens_per_second`: False
528
+ - `include_num_input_tokens_seen`: False
529
+ - `neftune_noise_alpha`: None
530
+ - `optim_target_modules`: None
531
+ - `batch_eval_metrics`: False
532
+ - `batch_sampler`: no_duplicates
533
+ - `multi_dataset_batch_sampler`: proportional
534
+
535
+ </details>
536
+
537
+ ### Training Logs
538
+ | Epoch | Step | Training Loss | loss | max_ap |
539
+ |:------:|:----:|:-------------:|:-------:|:------:|
540
+ | 0.0501 | 375 | 23.8735 | 21.0352 | 0.6131 |
541
+ | 0.1002 | 750 | 22.4091 | 19.6992 | 0.6353 |
542
+ | 0.1503 | 1125 | 19.4663 | 16.2104 | 0.6580 |
543
+ | 0.2004 | 1500 | 15.348 | 13.2038 | 0.6732 |
544
+ | 0.2505 | 1875 | 12.5377 | 11.6357 | 0.6815 |
545
+ | 0.3006 | 2250 | 11.4576 | 10.7570 | 0.6862 |
546
+ | 0.3507 | 2625 | 10.7446 | 10.1819 | 0.6891 |
547
+ | 0.4009 | 3000 | 10.2323 | 9.7470 | 0.6904 |
548
+ | 0.4510 | 3375 | 9.9825 | 9.4256 | 0.6914 |
549
+ | 0.5011 | 3750 | 9.6954 | 9.2200 | 0.6923 |
550
+ | 0.5512 | 4125 | 9.6359 | 9.0367 | 0.6923 |
551
+ | 0.6013 | 4500 | 8.3103 | 7.8258 | 0.7026 |
552
+ | 0.6514 | 4875 | 4.4845 | 7.4044 | 0.7073 |
553
+ | 0.7015 | 5250 | 3.8303 | 7.2647 | 0.7092 |
554
+ | 0.7516 | 5625 | 3.5617 | 7.2020 | 0.7098 |
555
+ | 0.8017 | 6000 | 3.4088 | 7.1684 | 0.7103 |
556
+ | 0.8518 | 6375 | 3.347 | 7.1531 | 0.7108 |
557
+ | 0.9019 | 6750 | 3.2064 | 7.1451 | 0.7109 |
558
+ | 0.9520 | 7125 | 3.3096 | 7.1427 | 0.7110 |
559
+
560
+
561
+ ### Framework Versions
562
+ - Python: 3.10.13
563
+ - Sentence Transformers: 3.0.1
564
+ - Transformers: 4.41.2
565
+ - PyTorch: 2.1.2
566
+ - Accelerate: 0.30.1
567
+ - Datasets: 2.19.2
568
+ - Tokenizers: 0.19.1
569
+
570
+ ## Citation
571
+
572
+ ### BibTeX
573
+
574
+ #### Sentence Transformers
575
+ ```bibtex
576
+ @inproceedings{reimers-2019-sentence-bert,
577
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
578
+ author = "Reimers, Nils and Gurevych, Iryna",
579
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
580
+ month = "11",
581
+ year = "2019",
582
+ publisher = "Association for Computational Linguistics",
583
+ url = "https://arxiv.org/abs/1908.10084",
584
+ }
585
+ ```
586
+
587
+ #### AdaptiveLayerLoss
588
+ ```bibtex
589
+ @misc{li20242d,
590
+ title={2D Matryoshka Sentence Embeddings},
591
+ author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
592
+ year={2024},
593
+ eprint={2402.14776},
594
+ archivePrefix={arXiv},
595
+ primaryClass={cs.CL}
596
+ }
597
+ ```
598
+
599
+ #### MultipleNegativesRankingLoss
600
+ ```bibtex
601
+ @misc{henderson2017efficient,
602
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
603
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
604
+ year={2017},
605
+ eprint={1705.00652},
606
+ archivePrefix={arXiv},
607
+ primaryClass={cs.CL}
608
+ }
609
+ ```
610
+
611
+ <!--
612
+ ## Glossary
613
+
614
+ *Clearly define terms in order to be accessible across audiences.*
615
+ -->
616
+
617
+ <!--
618
+ ## Model Card Authors
619
+
620
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
621
+ -->
622
+
623
+ <!--
624
+ ## Model Card Contact
625
+
626
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
627
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/deberta-v3-small",
3
+ "architectures": [
4
+ "DebertaV2Model"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-07,
13
+ "max_position_embeddings": 512,
14
+ "max_relative_positions": -1,
15
+ "model_type": "deberta-v2",
16
+ "norm_rel_ebd": "layer_norm",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "pooler_dropout": 0,
21
+ "pooler_hidden_act": "gelu",
22
+ "pooler_hidden_size": 768,
23
+ "pos_att_type": [
24
+ "p2c",
25
+ "c2p"
26
+ ],
27
+ "position_biased_input": false,
28
+ "position_buckets": 256,
29
+ "relative_attention": true,
30
+ "share_att_key": true,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.41.2",
33
+ "type_vocab_size": 0,
34
+ "vocab_size": 128100
35
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a551670eeb8299ed00f95f4ee307f9154b6ae648814ea98b25ddd71819fc7a1c
3
+ size 565251810
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "sp_model_kwargs": {},
54
+ "split_by_punct": false,
55
+ "tokenizer_class": "DebertaV2Tokenizer",
56
+ "unk_token": "[UNK]",
57
+ "vocab_type": "spm"
58
+ }