bobobert4 commited on
Commit
8ef49c0
1 Parent(s): 1062257

Another commit: PandaReachDenseSAC-n3

Browse files
PandaReachDenseSAC-n3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfaf8d475c330f678be307c1cd4fb21cf0e696d3519a3f2e696babcbc6725882
3
+ size 5644787
PandaReachDenseSAC-n3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
PandaReachDenseSAC-n3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aec4043d1e71b94e6c9136e33b875288460c5ed4503d504080e0993694db168a
3
+ size 1024038
PandaReachDenseSAC-n3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fbd323eb4954df9709dda1882d5377c4a2d98213fefd6e7102bb4a00c745026
3
+ size 2041209
PandaReachDenseSAC-n3/data ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x7f4fbe18f670>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f4fbe18e940>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "net_arch": [
14
+ 400,
15
+ 300
16
+ ],
17
+ "use_sde": true
18
+ },
19
+ "observation_space": {
20
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
21
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
22
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
23
+ "_shape": null,
24
+ "dtype": null,
25
+ "_np_random": null
26
+ },
27
+ "action_space": {
28
+ ":type:": "<class 'gym.spaces.box.Box'>",
29
+ ":serialized:": "gAWV9AsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAnbFIBOMUZR7su1ZFDUc7B6JraVgLCBvICAlq8m+1uGGxBH31fA01ddv5J30LSjhnLVhwWWf9NyVxvyHfeIZ63Ovrc5uObOWCV2fL3SG4TrzogTkmGynnPCoTMjN+kVwp1rcG16Thc/Ht/c7egcGwKcky/pedw7fsyUtOyGj3RpsN3CDhEke94ErA4X1Kv5YnHa+INOaQOT5PmJez82nQtPYMp3KQ3xIvtkrZUKxJqTOrZ3/iWPGSbGY9EGe1O4PIRRB1PEigqkJWF3Gxp8opkl7uJQc+ivPyo1zuLmOtg44OlHx5UBoTY7I+9ZqJfjwuRubejHp4EOBl16sO3igMEmTrzF/Vj7hSNxlxnFxjmPb28lWFp04LwMcgn0dqrgytoDeg6+mEVpWBl+RstyBm1zlLeXJsixQIjJZrdgIiRULnktaTq3ACfcEt6/DXZVqu5ZPkkHzM7EuVukWpYFpM83IkhtbpV5giatrvWz0ztJ8SspINMZJyhGhRQvriqiidcQ8yAlxWuFlyfTOqO7oJVEjBVchrXteS2qzrHDkpbph7jCbIO9gi+M/+LDC+RoYiehoh0GQG46Mh2izPPy3c6t+TSJ7k43DJURDjr0KtjXlU7rSHpbwasN4ao4omk7FN1o7R7gAb7z/qrDG9xOwjXiVzr8wNLmRSad2A5KDvj4YD5SHYP6LRuqB5bbmfXUO0wRLxFoRJRXguU4sA46lPvVaf8816gsMy6wS3wWSEkicHcJC9oLjrOr9E/X/CCIXvrn+jwcROvXAgEP6oTTikHRQciDJz3dVlD0NtYlEkenYQPS/zcqjfoXpVvsTSznoaV3t/kJpPdmMdKud9W1D+9tC+lxaU5mOasgJ0LwCEmzAz8QzGmjEqcfI0tdXWl7wRbSOwhM6OUM6B3S/eLtvr2E/d1938mI3xrjQsG2GsmMBtXn8Oc2Sa9MqjsrUGL87+QCOnlppLpm740zsHe9+HNonJ51b2+KRwUcrfeByEH8xbdBUY8XMQe55J5lsRz2R+AFBUEAqhKbVVSrIPFkBD29VCQReLE6z53IGRq81fxIObqRcpPfcRYqn2CSPCuM990XZ2YgyLGvRb1ASK6bQSYpg6QErD8bUL2hXCPfYXLQr6Jt0yaP/9BGCadBidzcYWIJz4vgTFgvYKarbogb3LOv5vbSWYkG6ky/i6e0mGZAUTo5zLMA3PYp9CI92V2SWf39glYPE1t3rxIWb2NZtkMSCSHK1+c+b28VbJjowIzyUiNqZhSmDfaD6/3Ctkwr7s9xCUsk4gIZcGjB3i/XEbckp+9mNPTtKofqPnLffK0RdFLtPgsQDEakSDbFCcl4im87tvw3LgdPTsB5bJRgyXs1TgCRVKOMvoI5kw3/shbUq8HEBg77WLmKnL6t4IXbq0b3ybWOa+AehGht45jC6ScTXI7sbTlJVGSAy1GUfeZS5luAXmMRIFEvsQkCm3RBTQjDYBbyYF6XsCMZPYlsn9xf3P83ChymZw/J3pznb4rmUIq+f+yBivzJwLB+K+g9xlseKPEmMkoS2NEAG7ZQIU1pzozRzusydqX/EOyNjwlryCF6opjbG+wEV1lnjXyZx+zFLCL3MeQfqEXPMLFRBdAfO4k/LamyaOsCGYlVM/TshY1e91OUgl9ZbnyD55dsYzgGcgylQbIY/u6rz+57kYs+q34CnRvhzQ0AlDeoD0NuzwuHrtTamiM5fy9axi2dDq20qvrYgDjbr2hM0fdCxlHykhYPoDMbq5dbDfmmGW9kFmhLADjqdVdZNDl8k/zH1i3Rpb6ff8JHJlNgk1fN5AXeog5ImMDq1oR/l55M0YpBR3asCeMyZtCCfDeIdhow7EJS6MMUwpndjvyFuUCN4F4ZD44WMLqvj7c0hNipCNkjFg/RAPruZgKKcl7VOeEMoGzaUghpIgzkokm2qwGK9RA4BYxAcaDxXZmlzCtdn50HJ0fF/MRO515qrN6eZfP1yCQEeec64vZ0C+reZzMa/qAc4UTReiFQYUa8D1C9kj88DkFM6AcfPUtwn85d3cp2hc0+8pviqzyhsMU/zKD92QTp5nEtWaI7seeyE+n584Pdw8T8nqHWqeo+Ez6Ls+4eprdmgFfMhq+MBly8EOMXA5WjVxMovUYZhUf4RXI2psXLrIX9la8wyJ4Qzsz7JJpXYsMQtXzJWUuhosj65YsFeRzagHccWbKbb08S5G7EpZXUrNX4llxHwAL6WRHB90jCaVkrpPxbEClbh4sXvaKHgtS6jD1PKUWXhb1ZlaqHHCDnvUVl9b31l/VHDkpgopJZFBoDzcojfSH4tU6oZpfQ/oGg2S+JhUaTZNhsUTsniBMI3J5LXa4M0Olyfbl7ti41NYiIgksZHGs1VoeTMRYUeNOnvMz8UvkvvTiWcfAgDBpWMePLiIHnfYfwMnNf5unHuW8+iHwwDceP32XRJZVNCZcAvyxUu90MLM2V4BiNHZ49at3CEELIkyr868ZOwCLmrpQ4StRaNG7LBhuF8U2Wf36gBaeoXn5xq0Ntd6T76zBac4aaOsiArr8TPvbcMIaEPmuZT3cVCYcyj0hEPW2nYNtmlGxGHRlKvy7eSCLve+bLQiptygY37Vedx1eFaQSgDz7kTP/qTIl/eCLsG+0WdNVl4/fi0pne8e3lxDytOBEChMqJNqAJj9jMjqnOfCQp92QGf66Bfq00UwHkCmllD9FuCQScXEum+STmvZiTa2FimutFNu4kqAXggzeS4Zfcu7zE7NoB6+6v2MqnqOTtZQjsN3NAFiablmzPG0jVtRhgkosGOZtV7UHmzZWgWXIRiimvwxtwUFya6n5w9X9uZxuBP0M0HJwveFa1IgLH56oACIKPeu5aH3ZOA/tdVsEhwG9QSFIGVQJCNtiVYZVO5K+TxL5CgAt/nE2UOHl2ZJuudQYVg9zajrUr04Ff4HvusupxC1xmqeCn5oc5MyqoZicksmdANFnvwltp3MFBIgpXSbOkcA1b4vb1W9C5XaIfssBpioB7CQG0zyd98E3vMWzE5I+Jv4DYgeEj7PB8hXYJgpJMduoA6ymEsX/Uc7cN5wuUaOEsCehxCtbt8zywPNXAitxAQgxNAIRHtQkWmBUdU7Dtaan4BUN+BQRF5W0edCRouOrDTLo0ohnAxCu8iKGfre+a5GfHinyzTuXsdqYSVnYOmtCAMf6A+YyyLXrpt3rKfJrxH8PMHaL+y6V4D668Zo9Yo2VRmxiKkaF7DJw/Q71/0uOWem8yU34BJAUbLuPd2Ycd+B79T6bxLTcHS2jlf/9lpa/hnBgmFE0uZU/9q0xlNB33lRkCUFpohEcoMaUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RLYHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
30
+ "dtype": "float32",
31
+ "_shape": [
32
+ 3
33
+ ],
34
+ "low": "[-1. -1. -1.]",
35
+ "high": "[1. 1. 1.]",
36
+ "bounded_below": "[ True True True]",
37
+ "bounded_above": "[ True True True]",
38
+ "_np_random": "RandomState(MT19937)"
39
+ },
40
+ "n_envs": 1,
41
+ "num_timesteps": 50000,
42
+ "_total_timesteps": 50000,
43
+ "_num_timesteps_at_start": 0,
44
+ "seed": null,
45
+ "action_noise": null,
46
+ "start_time": 1676673725005398556,
47
+ "learning_rate": 0.0008,
48
+ "tensorboard_log": null,
49
+ "lr_schedule": {
50
+ ":type:": "<class 'function'>",
51
+ ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3JvYmVydG8vbWluaWNvbmRhMy9lbnZzL2d5bV9odWdnaW5nL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9yb2JlcnRvL21pbmljb25kYTMvZW52cy9neW1faHVnZ2luZy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9KNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
52
+ },
53
+ "_last_obs": {
54
+ ":type:": "<class 'collections.OrderedDict'>",
55
+ ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAaZkoPOOT8zyr3II8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==",
56
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
57
+ "desired_goal": "[[0.01029048 0.0297336 0.01597436]]",
58
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
59
+ },
60
+ "_last_episode_starts": {
61
+ ":type:": "<class 'numpy.ndarray'>",
62
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
63
+ },
64
+ "_last_original_obs": {
65
+ ":type:": "<class 'collections.OrderedDict'>",
66
+ ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAaZkoPOOT8zyr3II8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==",
67
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
68
+ "desired_goal": "[[0.01029048 0.0297336 0.01597436]]",
69
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
70
+ },
71
+ "_episode_num": 1000,
72
+ "use_sde": true,
73
+ "sde_sample_freq": 8,
74
+ "_current_progress_remaining": 0.0,
75
+ "ep_info_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIv9cQHJdx37+UhpRSlIwBbJRLMowBdJRHQHULfkq+ajN1fZQoaAZoCWgPQwgLKqp+pfPhv5SGlFKUaBVLMmgWR0B1EsGA08/2dX2UKGgGaAloD0MIbVfog2Xs4L+UhpRSlGgVSzJoFkdAdRoKohpxm3V9lChoBmgJaA9DCHHGMCdok9+/lIaUUpRoFUsyaBZHQHUhREroW591fZQoaAZoCWgPQwgmcVZETfTZv5SGlFKUaBVLMmgWR0B1KJOwgTysdX2UKGgGaAloD0MI7uh/uRYt5b+UhpRSlGgVSzJoFkdAdS/KXOW0JHV9lChoBmgJaA9DCJv+7EeKyOi/lIaUUpRoFUsyaBZHQHU3CYgJTl11fZQoaAZoCWgPQwgaFM0DWGTjv5SGlFKUaBVLMmgWR0B1PkMOPNmldX2UKGgGaAloD0MIIZOMnIU937+UhpRSlGgVSzJoFkdAdUWHFxXGO3V9lChoBmgJaA9DCPpfrkUL0Om/lIaUUpRoFUsyaBZHQHVMxbW3BpJ1fZQoaAZoCWgPQwi8ICI17eLiv5SGlFKUaBVLMmgWR0B1U/4vexfOdX2UKGgGaAloD0MIWz/9Z82P5r+UhpRSlGgVSzJoFkdAdVtHR1HOKXV9lChoBmgJaA9DCAvuBzwwAOK/lIaUUpRoFUsyaBZHQHVihlg+hXd1fZQoaAZoCWgPQwjThO0nY/zvv5SGlFKUaBVLMmgWR0B1alNN8E3bdX2UKGgGaAloD0MIBRVVv9L51b+UhpRSlGgVSzJoFkdAdXGX531SO3V9lChoBmgJaA9DCHaJ6q2Brdu/lIaUUpRoFUsyaBZHQHV4z/Mnqml1fZQoaAZoCWgPQwgMdVjhlg/lv5SGlFKUaBVLMmgWR0B1gBJRO1v3dX2UKGgGaAloD0MIWONsOgI457+UhpRSlGgVSzJoFkdAdYdq+8Gs3nV9lChoBmgJaA9DCN1CVyJQfeK/lIaUUpRoFUsyaBZHQHWOscABDG91fZQoaAZoCWgPQwh319mQf2bhv5SGlFKUaBVLMmgWR0B1lexmkFfRdX2UKGgGaAloD0MI8iIT8Gsk2L+UhpRSlGgVSzJoFkdAdZ00Nz8xbnV9lChoBmgJaA9DCD8fZcQFoN2/lIaUUpRoFUsyaBZHQHWkcolUp/h1fZQoaAZoCWgPQwiIodXJGYriv5SGlFKUaBVLMmgWR0B1q7WBjFyadX2UKGgGaAloD0MIS1tc4zNZ5b+UhpRSlGgVSzJoFkdAdbLseGO+7HV9lChoBmgJaA9DCG3IPzOIj+O/lIaUUpRoFUsyaBZHQHW6M4xUNrl1fZQoaAZoCWgPQwjz/6ojRzrev5SGlFKUaBVLMmgWR0B1wW5J9RaYdX2UKGgGaAloD0MIzTy5pkBm4L+UhpRSlGgVSzJoFkdAdcipz90ihXV9lChoBmgJaA9DCIejq3R3neK/lIaUUpRoFUsyaBZHQHXP889wFTx1fZQoaAZoCWgPQwg8akyIuSTjv5SGlFKUaBVLMmgWR0B11zrE9+w1dX2UKGgGaAloD0MIsFjDRe5p5b+UhpRSlGgVSzJoFkdAdd5+PRzBAXV9lChoBmgJaA9DCDG0OjlDceG/lIaUUpRoFUsyaBZHQHXltAxBVuJ1fZQoaAZoCWgPQwjZX3ZPHpbpv5SGlFKUaBVLMmgWR0B17X3YcvM9dX2UKGgGaAloD0MIM05DVOHP4r+UhpRSlGgVSzJoFkdAdfS7MPjGUHV9lChoBmgJaA9DCGa+g584gOa/lIaUUpRoFUsyaBZHQHX79nf2saN1fZQoaAZoCWgPQwibq+Y5Il/lv5SGlFKUaBVLMmgWR0B2AzBDXvphdX2UKGgGaAloD0MI7pOjAFEw5b+UhpRSlGgVSzJoFkdAdgpqKxcE/3V9lChoBmgJaA9DCAXhCijU092/lIaUUpRoFUsyaBZHQHYRrihnJ1d1fZQoaAZoCWgPQwg5miMrv4zkv5SGlFKUaBVLMmgWR0B2GOmXPZ7HdX2UKGgGaAloD0MIIT1FDhG35r+UhpRSlGgVSzJoFkdAdiAvze40/HV9lChoBmgJaA9DCN0ostZQati/lIaUUpRoFUsyaBZHQHYnZokAxSJ1fZQoaAZoCWgPQwiZuiu7YPDnv5SGlFKUaBVLMmgWR0B2Lq3fAKv3dX2UKGgGaAloD0MIdM5PcRz457+UhpRSlGgVSzJoFkdAdjXQT238XXV9lChoBmgJaA9DCI+JlGbzuOe/lIaUUpRoFUsyaBZHQHY9DENvwVl1fZQoaAZoCWgPQwjyCkRPyiTkv5SGlFKUaBVLMmgWR0B2REF4cFQmdX2UKGgGaAloD0MIngyOklfn4r+UhpRSlGgVSzJoFkdAdkuKgqVhTnV9lChoBmgJaA9DCFZFuMmosuC/lIaUUpRoFUsyaBZHQHZSy+UQkHF1fZQoaAZoCWgPQwjfTiLCv4jiv5SGlFKUaBVLMmgWR0B2WfeSB9ThdX2UKGgGaAloD0MIdZKtLqeE5r+UhpRSlGgVSzJoFkdAdmE16mfoR3V9lChoBmgJaA9DCO4ljdE6qt+/lIaUUpRoFUsyaBZHQHZogIhQm/p1fZQoaAZoCWgPQwhGzsKedvjZv5SGlFKUaBVLMmgWR0B2b8gq3EyddX2UKGgGaAloD0MIrYkFvqJb4L+UhpRSlGgVSzJoFkdAdnb9bor4FnV9lChoBmgJaA9DCNUI/Uy9buW/lIaUUpRoFUsyaBZHQHZ+QmE4//x1fZQoaAZoCWgPQwhb0eY4twnev5SGlFKUaBVLMmgWR0B2hYFOfukUdX2UKGgGaAloD0MI0IB6M2q+3L+UhpRSlGgVSzJoFkdAdoy3fQ8fWHV9lChoBmgJaA9DCDDZeLDF7uC/lIaUUpRoFUsyaBZHQHaT96PbO/t1fZQoaAZoCWgPQwhIpkOn513pv5SGlFKUaBVLMmgWR0B2mzFWGRFJdX2UKGgGaAloD0MIUWovou2Y4r+UhpRSlGgVSzJoFkdAdqJwiJO32HV9lChoBmgJaA9DCK2+uipQi9u/lIaUUpRoFUsyaBZHQHapp4SpR411fZQoaAZoCWgPQwhHIcms3mHnv5SGlFKUaBVLMmgWR0B2sPLB9Cu2dX2UKGgGaAloD0MIS6/NxkpM6L+UhpRSlGgVSzJoFkdAdrgoScslLXV9lChoBmgJaA9DCDRKl/4lqeC/lIaUUpRoFUsyaBZHQHa/dX1anrJ1fZQoaAZoCWgPQwh9XYb/dAPmv5SGlFKUaBVLMmgWR0B2xq8Hv+fidX2UKGgGaAloD0MIoFOQn41c3L+UhpRSlGgVSzJoFkdAds3i8Fpwj3V9lChoBmgJaA9DCMH+69y0Gei/lIaUUpRoFUsyaBZHQHbVFR1oxpN1fZQoaAZoCWgPQwhvDAHAsWfcv5SGlFKUaBVLMmgWR0B23FOKwY+CdX2UKGgGaAloD0MIAn6NJEG427+UhpRSlGgVSzJoFkdAduOa1TisGXV9lChoBmgJaA9DCKhtwygIHuC/lIaUUpRoFUsyaBZHQHbqzZDiOvN1fZQoaAZoCWgPQwhK0jWTbzblv5SGlFKUaBVLMmgWR0B28gg6ltTDdX2UKGgGaAloD0MIyO9t+rMf07+UhpRSlGgVSzJoFkdAdvlUgSvkinV9lChoBmgJaA9DCKrv/KIE/eS/lIaUUpRoFUsyaBZHQHcAjltCRfZ1fZQoaAZoCWgPQwjx2To42Jvbv5SGlFKUaBVLMmgWR0B3B8T+NtIkdX2UKGgGaAloD0MIdovAWN/A3b+UhpRSlGgVSzJoFkdAdw8Fi8WbgHV9lChoBmgJaA9DCGmNQSeEDue/lIaUUpRoFUsyaBZHQHcWwhStNi91fZQoaAZoCWgPQwg3F3/bEyTav5SGlFKUaBVLMmgWR0B3HfE4vN/wdX2UKGgGaAloD0MIlnoWhPI+3L+UhpRSlGgVSzJoFkdAdyUfwI+nqHV9lChoBmgJaA9DCGiz6nO1FeW/lIaUUpRoFUsyaBZHQHcsTo+wC8x1fZQoaAZoCWgPQwiRmQtcHuvnv5SGlFKUaBVLMmgWR0B3M4TfzjFRdX2UKGgGaAloD0MIQN8WLNUF3b+UhpRSlGgVSzJoFkdAdzrFBppN9HV9lChoBmgJaA9DCNbiUwCMZ+G/lIaUUpRoFUsyaBZHQHdCCa7VawF1fZQoaAZoCWgPQwgRUUzeALPov5SGlFKUaBVLMmgWR0B3STDjzZpSdX2UKGgGaAloD0MIJhk5C3va4r+UhpRSlGgVSzJoFkdAd1BwDvE0i3V9lChoBmgJaA9DCP6Bctu+R+O/lIaUUpRoFUsyaBZHQHdXtSl3yI51fZQoaAZoCWgPQwgxCKwcWmTfv5SGlFKUaBVLMmgWR0B3XupeeFtbdX2UKGgGaAloD0MIPpKSHobW47+UhpRSlGgVSzJoFkdAd2YsuFpPAXV9lChoBmgJaA9DCJbnwd1Zu96/lIaUUpRoFUsyaBZHQHdtaHwgDA91fZQoaAZoCWgPQwiwyK8fYoPpv5SGlFKUaBVLMmgWR0B3dL05EMLGdX2UKGgGaAloD0MI7GmHvyZr37+UhpRSlGgVSzJoFkdAd3v38n/kvXV9lChoBmgJaA9DCDoEjgQabNq/lIaUUpRoFUsyaBZHQHeDPl6qsEJ1fZQoaAZoCWgPQwg4SIjyBS3kv5SGlFKUaBVLMmgWR0B3ioT9KmKqdX2UKGgGaAloD0MI6gQ0ETY83b+UhpRSlGgVSzJoFkdAd5G9alk6LnV9lChoBmgJaA9DCFK13QTfNN+/lIaUUpRoFUsyaBZHQHeZBAB1cMV1fZQoaAZoCWgPQwgaTpmbb0TYv5SGlFKUaBVLMmgWR0B3oD2nKnvVdX2UKGgGaAloD0MIDwwgfChR5b+UhpRSlGgVSzJoFkdAd6eKISDh+HV9lChoBmgJaA9DCCamC7H6I9i/lIaUUpRoFUsyaBZHQHeuu+mFajh1fZQoaAZoCWgPQwhUxr/PuHDYv5SGlFKUaBVLMmgWR0B3tgVQAMlUdX2UKGgGaAloD0MIDmsqi8Ku6b+UhpRSlGgVSzJoFkdAd71GYrrgO3V9lChoBmgJaA9DCFitTPil/uW/lIaUUpRoFUsyaBZHQHfEkojOcDt1fZQoaAZoCWgPQwi9/48TJgzgv5SGlFKUaBVLMmgWR0B3y8gEEC/5dX2UKGgGaAloD0MIDhMNUvAU47+UhpRSlGgVSzJoFkdAd9MB3iaRZHV9lChoBmgJaA9DCNSZe0j43uO/lIaUUpRoFUsyaBZHQHfaRpHqeK91ZS4="
78
+ },
79
+ "ep_success_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAA8D+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUZS4="
82
+ },
83
+ "_n_updates": 40000,
84
+ "buffer_size": 300000,
85
+ "batch_size": 256,
86
+ "learning_starts": 10000,
87
+ "tau": 0.005,
88
+ "gamma": 0.99,
89
+ "gradient_steps": 1,
90
+ "optimize_memory_usage": false,
91
+ "replay_buffer_class": {
92
+ ":type:": "<class 'abc.ABCMeta'>",
93
+ ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
94
+ "__module__": "stable_baselines3.common.buffers",
95
+ "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
96
+ "__init__": "<function DictReplayBuffer.__init__ at 0x7f4fbe1da430>",
97
+ "add": "<function DictReplayBuffer.add at 0x7f4fbe1da4c0>",
98
+ "sample": "<function DictReplayBuffer.sample at 0x7f4fbe1da550>",
99
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f4fbe1da5e0>",
100
+ "__abstractmethods__": "frozenset()",
101
+ "_abc_impl": "<_abc._abc_data object at 0x7f4fbe1d77c0>"
102
+ },
103
+ "replay_buffer_kwargs": {},
104
+ "train_freq": {
105
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
106
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
107
+ },
108
+ "use_sde_at_warmup": false,
109
+ "target_entropy": {
110
+ ":type:": "<class 'numpy.float32'>",
111
+ ":serialized:": "gAWVZQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAABAwJSGlFKULg=="
112
+ },
113
+ "ent_coef": "auto",
114
+ "target_update_interval": 1,
115
+ "batch_norm_stats": [],
116
+ "batch_norm_stats_target": []
117
+ }
PandaReachDenseSAC-n3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84094c91fffce6a149ee6623a7e819fadb2dcd30911bc440b93417a970602f99
3
+ size 1507
PandaReachDenseSAC-n3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa9e39f0bd9e6e5d3ac48d66b1144cd04ca0b8ba215a7d1d4957ff7267d94b4d
3
+ size 2552264
PandaReachDenseSAC-n3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94b2df2dbc235203478488ad95b1ec121cda4861bb3ddf16fc215fe3de5208ce
3
+ size 747
PandaReachDenseSAC-n3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-60-generic-x86_64-with-glibc2.35 # 66-Ubuntu SMP Fri Jan 20 14:29:49 UTC 2023
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -10.07 +/- 2.92
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -0.56 +/- 0.21
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7f3458b4e670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3458b4dc40>"}, "verbose": 1, "policy_kwargs": {"net_arch": [400, 300], "use_sde": true}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": null, "learning_rate": 0.0008, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3JvYmVydG8vbWluaWNvbmRhMy9lbnZzL2d5bV9odWdnaW5nL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9yb2JlcnRvL21pbmljb25kYTMvZW52cy9neW1faHVnZ2luZy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9KNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": 8, "_current_progress_remaining": 1, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "buffer_size": 300000, "batch_size": 256, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7f3458b9a430>", "add": "<function DictReplayBuffer.add at 0x7f3458b9a4c0>", "sample": "<function DictReplayBuffer.sample at 0x7f3458b9a550>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f3458b9a5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3458b94e00>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": {":type:": "<class 'numpy.float32'>", ":serialized:": "gAWVZQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAABAwJSGlFKULg=="}, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.15.0-60-generic-x86_64-with-glibc2.35 # 66-Ubuntu SMP Fri Jan 20 14:29:49 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7f4fbe18f670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4fbe18e940>"}, "verbose": 1, "policy_kwargs": {"net_arch": [400, 300], "use_sde": true}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV9AsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5SFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylGgwjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAnbFIBOMUZR7su1ZFDUc7B6JraVgLCBvICAlq8m+1uGGxBH31fA01ddv5J30LSjhnLVhwWWf9NyVxvyHfeIZ63Ovrc5uObOWCV2fL3SG4TrzogTkmGynnPCoTMjN+kVwp1rcG16Thc/Ht/c7egcGwKcky/pedw7fsyUtOyGj3RpsN3CDhEke94ErA4X1Kv5YnHa+INOaQOT5PmJez82nQtPYMp3KQ3xIvtkrZUKxJqTOrZ3/iWPGSbGY9EGe1O4PIRRB1PEigqkJWF3Gxp8opkl7uJQc+ivPyo1zuLmOtg44OlHx5UBoTY7I+9ZqJfjwuRubejHp4EOBl16sO3igMEmTrzF/Vj7hSNxlxnFxjmPb28lWFp04LwMcgn0dqrgytoDeg6+mEVpWBl+RstyBm1zlLeXJsixQIjJZrdgIiRULnktaTq3ACfcEt6/DXZVqu5ZPkkHzM7EuVukWpYFpM83IkhtbpV5giatrvWz0ztJ8SspINMZJyhGhRQvriqiidcQ8yAlxWuFlyfTOqO7oJVEjBVchrXteS2qzrHDkpbph7jCbIO9gi+M/+LDC+RoYiehoh0GQG46Mh2izPPy3c6t+TSJ7k43DJURDjr0KtjXlU7rSHpbwasN4ao4omk7FN1o7R7gAb7z/qrDG9xOwjXiVzr8wNLmRSad2A5KDvj4YD5SHYP6LRuqB5bbmfXUO0wRLxFoRJRXguU4sA46lPvVaf8816gsMy6wS3wWSEkicHcJC9oLjrOr9E/X/CCIXvrn+jwcROvXAgEP6oTTikHRQciDJz3dVlD0NtYlEkenYQPS/zcqjfoXpVvsTSznoaV3t/kJpPdmMdKud9W1D+9tC+lxaU5mOasgJ0LwCEmzAz8QzGmjEqcfI0tdXWl7wRbSOwhM6OUM6B3S/eLtvr2E/d1938mI3xrjQsG2GsmMBtXn8Oc2Sa9MqjsrUGL87+QCOnlppLpm740zsHe9+HNonJ51b2+KRwUcrfeByEH8xbdBUY8XMQe55J5lsRz2R+AFBUEAqhKbVVSrIPFkBD29VCQReLE6z53IGRq81fxIObqRcpPfcRYqn2CSPCuM990XZ2YgyLGvRb1ASK6bQSYpg6QErD8bUL2hXCPfYXLQr6Jt0yaP/9BGCadBidzcYWIJz4vgTFgvYKarbogb3LOv5vbSWYkG6ky/i6e0mGZAUTo5zLMA3PYp9CI92V2SWf39glYPE1t3rxIWb2NZtkMSCSHK1+c+b28VbJjowIzyUiNqZhSmDfaD6/3Ctkwr7s9xCUsk4gIZcGjB3i/XEbckp+9mNPTtKofqPnLffK0RdFLtPgsQDEakSDbFCcl4im87tvw3LgdPTsB5bJRgyXs1TgCRVKOMvoI5kw3/shbUq8HEBg77WLmKnL6t4IXbq0b3ybWOa+AehGht45jC6ScTXI7sbTlJVGSAy1GUfeZS5luAXmMRIFEvsQkCm3RBTQjDYBbyYF6XsCMZPYlsn9xf3P83ChymZw/J3pznb4rmUIq+f+yBivzJwLB+K+g9xlseKPEmMkoS2NEAG7ZQIU1pzozRzusydqX/EOyNjwlryCF6opjbG+wEV1lnjXyZx+zFLCL3MeQfqEXPMLFRBdAfO4k/LamyaOsCGYlVM/TshY1e91OUgl9ZbnyD55dsYzgGcgylQbIY/u6rz+57kYs+q34CnRvhzQ0AlDeoD0NuzwuHrtTamiM5fy9axi2dDq20qvrYgDjbr2hM0fdCxlHykhYPoDMbq5dbDfmmGW9kFmhLADjqdVdZNDl8k/zH1i3Rpb6ff8JHJlNgk1fN5AXeog5ImMDq1oR/l55M0YpBR3asCeMyZtCCfDeIdhow7EJS6MMUwpndjvyFuUCN4F4ZD44WMLqvj7c0hNipCNkjFg/RAPruZgKKcl7VOeEMoGzaUghpIgzkokm2qwGK9RA4BYxAcaDxXZmlzCtdn50HJ0fF/MRO515qrN6eZfP1yCQEeec64vZ0C+reZzMa/qAc4UTReiFQYUa8D1C9kj88DkFM6AcfPUtwn85d3cp2hc0+8pviqzyhsMU/zKD92QTp5nEtWaI7seeyE+n584Pdw8T8nqHWqeo+Ez6Ls+4eprdmgFfMhq+MBly8EOMXA5WjVxMovUYZhUf4RXI2psXLrIX9la8wyJ4Qzsz7JJpXYsMQtXzJWUuhosj65YsFeRzagHccWbKbb08S5G7EpZXUrNX4llxHwAL6WRHB90jCaVkrpPxbEClbh4sXvaKHgtS6jD1PKUWXhb1ZlaqHHCDnvUVl9b31l/VHDkpgopJZFBoDzcojfSH4tU6oZpfQ/oGg2S+JhUaTZNhsUTsniBMI3J5LXa4M0Olyfbl7ti41NYiIgksZHGs1VoeTMRYUeNOnvMz8UvkvvTiWcfAgDBpWMePLiIHnfYfwMnNf5unHuW8+iHwwDceP32XRJZVNCZcAvyxUu90MLM2V4BiNHZ49at3CEELIkyr868ZOwCLmrpQ4StRaNG7LBhuF8U2Wf36gBaeoXn5xq0Ntd6T76zBac4aaOsiArr8TPvbcMIaEPmuZT3cVCYcyj0hEPW2nYNtmlGxGHRlKvy7eSCLve+bLQiptygY37Vedx1eFaQSgDz7kTP/qTIl/eCLsG+0WdNVl4/fi0pne8e3lxDytOBEChMqJNqAJj9jMjqnOfCQp92QGf66Bfq00UwHkCmllD9FuCQScXEum+STmvZiTa2FimutFNu4kqAXggzeS4Zfcu7zE7NoB6+6v2MqnqOTtZQjsN3NAFiablmzPG0jVtRhgkosGOZtV7UHmzZWgWXIRiimvwxtwUFya6n5w9X9uZxuBP0M0HJwveFa1IgLH56oACIKPeu5aH3ZOA/tdVsEhwG9QSFIGVQJCNtiVYZVO5K+TxL5CgAt/nE2UOHl2ZJuudQYVg9zajrUr04Ff4HvusupxC1xmqeCn5oc5MyqoZicksmdANFnvwltp3MFBIgpXSbOkcA1b4vb1W9C5XaIfssBpioB7CQG0zyd98E3vMWzE5I+Jv4DYgeEj7PB8hXYJgpJMduoA6ymEsX/Uc7cN5wuUaOEsCehxCtbt8zywPNXAitxAQgxNAIRHtQkWmBUdU7Dtaan4BUN+BQRF5W0edCRouOrDTLo0ohnAxCu8iKGfre+a5GfHinyzTuXsdqYSVnYOmtCAMf6A+YyyLXrpt3rKfJrxH8PMHaL+y6V4D668Zo9Yo2VRmxiKkaF7DJw/Q71/0uOWem8yU34BJAUbLuPd2Ycd+B79T6bxLTcHS2jlf/9lpa/hnBgmFE0uZU/9q0xlNB33lRkCUFpohEcoMaUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RLYHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 50000, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676673725005398556, "learning_rate": 0.0008, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3JvYmVydG8vbWluaWNvbmRhMy9lbnZzL2d5bV9odWdnaW5nL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9yb2JlcnRvL21pbmljb25kYTMvZW52cy9neW1faHVnZ2luZy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9KNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAaZkoPOOT8zyr3II8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[0.01029048 0.0297336 0.01597436]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAaZkoPOOT8zyr3II8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[0.01029048 0.0297336 0.01597436]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 1000, "use_sde": true, "sde_sample_freq": 8, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIv9cQHJdx37+UhpRSlIwBbJRLMowBdJRHQHULfkq+ajN1fZQoaAZoCWgPQwgLKqp+pfPhv5SGlFKUaBVLMmgWR0B1EsGA08/2dX2UKGgGaAloD0MIbVfog2Xs4L+UhpRSlGgVSzJoFkdAdRoKohpxm3V9lChoBmgJaA9DCHHGMCdok9+/lIaUUpRoFUsyaBZHQHUhREroW591fZQoaAZoCWgPQwgmcVZETfTZv5SGlFKUaBVLMmgWR0B1KJOwgTysdX2UKGgGaAloD0MI7uh/uRYt5b+UhpRSlGgVSzJoFkdAdS/KXOW0JHV9lChoBmgJaA9DCJv+7EeKyOi/lIaUUpRoFUsyaBZHQHU3CYgJTl11fZQoaAZoCWgPQwgaFM0DWGTjv5SGlFKUaBVLMmgWR0B1PkMOPNmldX2UKGgGaAloD0MIIZOMnIU937+UhpRSlGgVSzJoFkdAdUWHFxXGO3V9lChoBmgJaA9DCPpfrkUL0Om/lIaUUpRoFUsyaBZHQHVMxbW3BpJ1fZQoaAZoCWgPQwi8ICI17eLiv5SGlFKUaBVLMmgWR0B1U/4vexfOdX2UKGgGaAloD0MIWz/9Z82P5r+UhpRSlGgVSzJoFkdAdVtHR1HOKXV9lChoBmgJaA9DCAvuBzwwAOK/lIaUUpRoFUsyaBZHQHVihlg+hXd1fZQoaAZoCWgPQwjThO0nY/zvv5SGlFKUaBVLMmgWR0B1alNN8E3bdX2UKGgGaAloD0MIBRVVv9L51b+UhpRSlGgVSzJoFkdAdXGX531SO3V9lChoBmgJaA9DCHaJ6q2Brdu/lIaUUpRoFUsyaBZHQHV4z/Mnqml1fZQoaAZoCWgPQwgMdVjhlg/lv5SGlFKUaBVLMmgWR0B1gBJRO1v3dX2UKGgGaAloD0MIWONsOgI457+UhpRSlGgVSzJoFkdAdYdq+8Gs3nV9lChoBmgJaA9DCN1CVyJQfeK/lIaUUpRoFUsyaBZHQHWOscABDG91fZQoaAZoCWgPQwh319mQf2bhv5SGlFKUaBVLMmgWR0B1lexmkFfRdX2UKGgGaAloD0MI8iIT8Gsk2L+UhpRSlGgVSzJoFkdAdZ00Nz8xbnV9lChoBmgJaA9DCD8fZcQFoN2/lIaUUpRoFUsyaBZHQHWkcolUp/h1fZQoaAZoCWgPQwiIodXJGYriv5SGlFKUaBVLMmgWR0B1q7WBjFyadX2UKGgGaAloD0MIS1tc4zNZ5b+UhpRSlGgVSzJoFkdAdbLseGO+7HV9lChoBmgJaA9DCG3IPzOIj+O/lIaUUpRoFUsyaBZHQHW6M4xUNrl1fZQoaAZoCWgPQwjz/6ojRzrev5SGlFKUaBVLMmgWR0B1wW5J9RaYdX2UKGgGaAloD0MIzTy5pkBm4L+UhpRSlGgVSzJoFkdAdcipz90ihXV9lChoBmgJaA9DCIejq3R3neK/lIaUUpRoFUsyaBZHQHXP889wFTx1fZQoaAZoCWgPQwg8akyIuSTjv5SGlFKUaBVLMmgWR0B11zrE9+w1dX2UKGgGaAloD0MIsFjDRe5p5b+UhpRSlGgVSzJoFkdAdd5+PRzBAXV9lChoBmgJaA9DCDG0OjlDceG/lIaUUpRoFUsyaBZHQHXltAxBVuJ1fZQoaAZoCWgPQwjZX3ZPHpbpv5SGlFKUaBVLMmgWR0B17X3YcvM9dX2UKGgGaAloD0MIM05DVOHP4r+UhpRSlGgVSzJoFkdAdfS7MPjGUHV9lChoBmgJaA9DCGa+g584gOa/lIaUUpRoFUsyaBZHQHX79nf2saN1fZQoaAZoCWgPQwibq+Y5Il/lv5SGlFKUaBVLMmgWR0B2AzBDXvphdX2UKGgGaAloD0MI7pOjAFEw5b+UhpRSlGgVSzJoFkdAdgpqKxcE/3V9lChoBmgJaA9DCAXhCijU092/lIaUUpRoFUsyaBZHQHYRrihnJ1d1fZQoaAZoCWgPQwg5miMrv4zkv5SGlFKUaBVLMmgWR0B2GOmXPZ7HdX2UKGgGaAloD0MIIT1FDhG35r+UhpRSlGgVSzJoFkdAdiAvze40/HV9lChoBmgJaA9DCN0ostZQati/lIaUUpRoFUsyaBZHQHYnZokAxSJ1fZQoaAZoCWgPQwiZuiu7YPDnv5SGlFKUaBVLMmgWR0B2Lq3fAKv3dX2UKGgGaAloD0MIdM5PcRz457+UhpRSlGgVSzJoFkdAdjXQT238XXV9lChoBmgJaA9DCI+JlGbzuOe/lIaUUpRoFUsyaBZHQHY9DENvwVl1fZQoaAZoCWgPQwjyCkRPyiTkv5SGlFKUaBVLMmgWR0B2REF4cFQmdX2UKGgGaAloD0MIngyOklfn4r+UhpRSlGgVSzJoFkdAdkuKgqVhTnV9lChoBmgJaA9DCFZFuMmosuC/lIaUUpRoFUsyaBZHQHZSy+UQkHF1fZQoaAZoCWgPQwjfTiLCv4jiv5SGlFKUaBVLMmgWR0B2WfeSB9ThdX2UKGgGaAloD0MIdZKtLqeE5r+UhpRSlGgVSzJoFkdAdmE16mfoR3V9lChoBmgJaA9DCO4ljdE6qt+/lIaUUpRoFUsyaBZHQHZogIhQm/p1fZQoaAZoCWgPQwhGzsKedvjZv5SGlFKUaBVLMmgWR0B2b8gq3EyddX2UKGgGaAloD0MIrYkFvqJb4L+UhpRSlGgVSzJoFkdAdnb9bor4FnV9lChoBmgJaA9DCNUI/Uy9buW/lIaUUpRoFUsyaBZHQHZ+QmE4//x1fZQoaAZoCWgPQwhb0eY4twnev5SGlFKUaBVLMmgWR0B2hYFOfukUdX2UKGgGaAloD0MI0IB6M2q+3L+UhpRSlGgVSzJoFkdAdoy3fQ8fWHV9lChoBmgJaA9DCDDZeLDF7uC/lIaUUpRoFUsyaBZHQHaT96PbO/t1fZQoaAZoCWgPQwhIpkOn513pv5SGlFKUaBVLMmgWR0B2mzFWGRFJdX2UKGgGaAloD0MIUWovou2Y4r+UhpRSlGgVSzJoFkdAdqJwiJO32HV9lChoBmgJaA9DCK2+uipQi9u/lIaUUpRoFUsyaBZHQHapp4SpR411fZQoaAZoCWgPQwhHIcms3mHnv5SGlFKUaBVLMmgWR0B2sPLB9Cu2dX2UKGgGaAloD0MIS6/NxkpM6L+UhpRSlGgVSzJoFkdAdrgoScslLXV9lChoBmgJaA9DCDRKl/4lqeC/lIaUUpRoFUsyaBZHQHa/dX1anrJ1fZQoaAZoCWgPQwh9XYb/dAPmv5SGlFKUaBVLMmgWR0B2xq8Hv+fidX2UKGgGaAloD0MIoFOQn41c3L+UhpRSlGgVSzJoFkdAds3i8Fpwj3V9lChoBmgJaA9DCMH+69y0Gei/lIaUUpRoFUsyaBZHQHbVFR1oxpN1fZQoaAZoCWgPQwhvDAHAsWfcv5SGlFKUaBVLMmgWR0B23FOKwY+CdX2UKGgGaAloD0MIAn6NJEG427+UhpRSlGgVSzJoFkdAduOa1TisGXV9lChoBmgJaA9DCKhtwygIHuC/lIaUUpRoFUsyaBZHQHbqzZDiOvN1fZQoaAZoCWgPQwhK0jWTbzblv5SGlFKUaBVLMmgWR0B28gg6ltTDdX2UKGgGaAloD0MIyO9t+rMf07+UhpRSlGgVSzJoFkdAdvlUgSvkinV9lChoBmgJaA9DCKrv/KIE/eS/lIaUUpRoFUsyaBZHQHcAjltCRfZ1fZQoaAZoCWgPQwjx2To42Jvbv5SGlFKUaBVLMmgWR0B3B8T+NtIkdX2UKGgGaAloD0MIdovAWN/A3b+UhpRSlGgVSzJoFkdAdw8Fi8WbgHV9lChoBmgJaA9DCGmNQSeEDue/lIaUUpRoFUsyaBZHQHcWwhStNi91fZQoaAZoCWgPQwg3F3/bEyTav5SGlFKUaBVLMmgWR0B3HfE4vN/wdX2UKGgGaAloD0MIlnoWhPI+3L+UhpRSlGgVSzJoFkdAdyUfwI+nqHV9lChoBmgJaA9DCGiz6nO1FeW/lIaUUpRoFUsyaBZHQHcsTo+wC8x1fZQoaAZoCWgPQwiRmQtcHuvnv5SGlFKUaBVLMmgWR0B3M4TfzjFRdX2UKGgGaAloD0MIQN8WLNUF3b+UhpRSlGgVSzJoFkdAdzrFBppN9HV9lChoBmgJaA9DCNbiUwCMZ+G/lIaUUpRoFUsyaBZHQHdCCa7VawF1fZQoaAZoCWgPQwgRUUzeALPov5SGlFKUaBVLMmgWR0B3STDjzZpSdX2UKGgGaAloD0MIJhk5C3va4r+UhpRSlGgVSzJoFkdAd1BwDvE0i3V9lChoBmgJaA9DCP6Bctu+R+O/lIaUUpRoFUsyaBZHQHdXtSl3yI51fZQoaAZoCWgPQwgxCKwcWmTfv5SGlFKUaBVLMmgWR0B3XupeeFtbdX2UKGgGaAloD0MIPpKSHobW47+UhpRSlGgVSzJoFkdAd2YsuFpPAXV9lChoBmgJaA9DCJbnwd1Zu96/lIaUUpRoFUsyaBZHQHdtaHwgDA91fZQoaAZoCWgPQwiwyK8fYoPpv5SGlFKUaBVLMmgWR0B3dL05EMLGdX2UKGgGaAloD0MI7GmHvyZr37+UhpRSlGgVSzJoFkdAd3v38n/kvXV9lChoBmgJaA9DCDoEjgQabNq/lIaUUpRoFUsyaBZHQHeDPl6qsEJ1fZQoaAZoCWgPQwg4SIjyBS3kv5SGlFKUaBVLMmgWR0B3ioT9KmKqdX2UKGgGaAloD0MI6gQ0ETY83b+UhpRSlGgVSzJoFkdAd5G9alk6LnV9lChoBmgJaA9DCFK13QTfNN+/lIaUUpRoFUsyaBZHQHeZBAB1cMV1fZQoaAZoCWgPQwgaTpmbb0TYv5SGlFKUaBVLMmgWR0B3oD2nKnvVdX2UKGgGaAloD0MIDwwgfChR5b+UhpRSlGgVSzJoFkdAd6eKISDh+HV9lChoBmgJaA9DCCamC7H6I9i/lIaUUpRoFUsyaBZHQHeuu+mFajh1fZQoaAZoCWgPQwhUxr/PuHDYv5SGlFKUaBVLMmgWR0B3tgVQAMlUdX2UKGgGaAloD0MIDmsqi8Ku6b+UhpRSlGgVSzJoFkdAd71GYrrgO3V9lChoBmgJaA9DCFitTPil/uW/lIaUUpRoFUsyaBZHQHfEkojOcDt1fZQoaAZoCWgPQwi9/48TJgzgv5SGlFKUaBVLMmgWR0B3y8gEEC/5dX2UKGgGaAloD0MIDhMNUvAU47+UhpRSlGgVSzJoFkdAd9MB3iaRZHV9lChoBmgJaA9DCNSZe0j43uO/lIaUUpRoFUsyaBZHQHfaRpHqeK91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAA8D+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUZS4="}, "_n_updates": 40000, "buffer_size": 300000, "batch_size": 256, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7f4fbe1da430>", "add": "<function DictReplayBuffer.add at 0x7f4fbe1da4c0>", "sample": "<function DictReplayBuffer.sample at 0x7f4fbe1da550>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f4fbe1da5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4fbe1d77c0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": {":type:": "<class 'numpy.float32'>", ":serialized:": "gAWVZQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAABAwJSGlFKULg=="}, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.15.0-60-generic-x86_64-with-glibc2.35 # 66-Ubuntu SMP Fri Jan 20 14:29:49 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -10.067005313187838, "std_reward": 2.918267742484218, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-17T15:21:10.008032"}
 
1
+ {"mean_reward": -0.5636228101560846, "std_reward": 0.20534762410187296, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-17T15:48:28.053203"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:102e566432ced69f7d52d86780cdcbd9dda3a18fe4ad56f951ecf0133cf5b835
3
- size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55a56affca02201bfc54722203be5a6b9e1259ddb297a0fe61b80216daf6e05e
3
+ size 1776