bobobert4 commited on
Commit
57d7d34
1 Parent(s): 913e315

Model commit: PandaPickAndPlaceSAC-n2

Browse files
PandaPickAndPlaceSAC-n2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e00c90a10878f8331018bc8fa1a00161bc09716730ec39d63f9f74a720bb7eac
3
+ size 1209797
PandaPickAndPlaceSAC-n2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
PandaPickAndPlaceSAC-n2/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe303e391c36f8922ed824ca9fb87dc60ce9ad73cb277d2d01eb7b2177ff14e5
3
+ size 214694
PandaPickAndPlaceSAC-n2/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b40d7a53e2793e2ca5c1af9d3bb548bee9e10839d873e791f82942407b98ea79
3
+ size 428601
PandaPickAndPlaceSAC-n2/data ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x7f3deb4cf670>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f3deb4d03c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "net_arch": [
14
+ 200,
15
+ 100
16
+ ],
17
+ "use_sde": true
18
+ },
19
+ "observation_space": {
20
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
21
+ ":serialized:": "gAWV1AMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLE4WUaBpoHSiWTAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlGgVSxOFlGggdJRSlGgjaB0olkwAAAAAAAAAAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQZRoFUsThZRoIHSUUpRoKGgdKJYTAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQGUaCxLE4WUaCB0lFKUaDJoHSiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGgsSxOFlGggdJRSlGg3TnVidWgYTmgQTmg3TnViLg==",
22
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.\n 10.], (19,), float32))])",
23
+ "_shape": null,
24
+ "dtype": null,
25
+ "_np_random": null
26
+ },
27
+ "action_space": {
28
+ ":type:": "<class 'gym.spaces.box.Box'>",
29
+ ":serialized:": "gAWV/gsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAABmOaQsvfDVB8l17TsT56KN7IqMn23QcOYLF4ZLw2kSldtGgxbfQ49j5w3/TN1X/nYkQl1QZm13pExhW7E+zIcXp+MOZCKWkIoOWVrcci4EfyuAzzCUTLI9PWw6haYsKOGj5v9bMzsUnzhUIQUter6Agbex//LlLyVgrBhhrx/BGuC6adUj4dUO6YU2Vmjf89WCqao2iklVpSjfTf66wNnP9lRN6NFwOAv/0HDFiN1n4bAwOleKRUp80vWXsEBMu5KTI/P01sExZL3OeX6UyTTohuD9kFlPeGxptNdassNixrjRK+ICSY6Mm0p1jozvR1aeTFpfpqet0YGU/i10Qx8dk5aqCi2+e+miiYQIQt2xUaYlSuJL7+lMkHkl5MazP3RuO6KeN4FJ31JzqZiNV+hHMp4pi52ecrly6hmH9vxzW/ksFXCz02F+5lSFr6chP+dGy5V9LNzSYDt6CFDhrtl+EkgSQrFfNenhYM/aOPmJ+yI733X/4o0TGkIgFo2+/lSyTuD2cNlRUqvDGZ4x9QpZyauDxtwrVj1Wyv7xcG5LraKUMdf8hY+ZBQG/Pi5bUCbC1MYclunz8Lgi+feihnBs+VHX4uixnTJbmrfsiBszdRoLaTKBmyGyeZ0ZZXP7bHmPyjx99IGvICFr6Q1cL6wBmRQY+PimMk0ZXR8hkLS+RO9xD/ognNYQmXBOcTN2ZIALCOUcnKItBG+0pJ8cuTh9ZzKIDJRQ0j6dXe1Ws5GDCZm8WyPj287Yqs9clvRZzL3akXpgH2XImF5kUwH/TEjwm+YD0Vnq0As5SPwA/N+zVKqX5osRdifVGtHz/j+jwZKFAUxvhKdfOwcQduuAXRxWWaPhxoJIqDy6ItKux18QDALGMVcSIwaM46lozVCtrElPjn13OxBZU7+xweDNSTU9PfGE3sc7q0V8FV54E5sLaFG99vo4LlZ7ndNP89DPe0w/wnQwOxOrD2j3V+3w1sQNQyk9UAX2c5HjtVI35PZbCjzMvqGBPSyoXYu8ivDz5HcKkHcDyXG58qeXrh2okkMKS1A7JYWWvmtBqriffvOWJHKrOL+9myDk/ewWzraX20dNXYnxVw5DvFkZ7WMf8ekwSRvo6jE3oyaz4b9VyGbQn0M9+W4Bj1KoqO/fEeX4/3WG2xBXQkZhs2ft0MrpgNt3M2CFCBJIR4EoIMtXW2aszqSVfIJQWOxqcmj5F6d+ZKV1bgK5lL6ewYeg2okQZzma2BClw7WnQPMbgpvVNKLaVQbVfM4BI7qPlHRgk0anjMaV5HlWHONbGJSS32klkFbSJGwZBPc5k9CZcNl+c81aRNiAeKhWx+4GLfS8r3K3oB+kQToOF7pKlh7DJfGenX6scIstLdg5SRSzhevJsI2ODr9wORaMqrqfYvYd3kgFjan+rBdJtCjZ+vyOYo4b4TWz1yyKvKeY5h9x4Xil/tH9f0/Ri2FsvwC9kcdxt48Otw8mwjcgVtSXIHJMK7lb/qArvGnr0Ni7LHN6bwANj9tmnhZflGGBKM86b84IX4RUTZgIrxEonluSB8sID0If0mUYg573qZ9V9quiNxPBMsCksUOYsLCJ/8G0UidENCAYs7xKN2D7MhPlq+PQXaQ0e18K8Axt1H3LsOt0mHtgzCAgUltO5R+d+5p2Bml+HEEJIFrYj0MvRAjD+SJtm5P2SZnvkhCuf0SwOdFrGaMLCrce/q1PbvluxmBdD4YUwHGWpOUegyycI/cyuhKEyayiIddLvaUyGWPVnwIH0bMz0+8vfYi19cEyQBTZVC9NRb0TbQt61GGxce8wAqQMjLi+o4bqac3sakMzTb8o9HQkE/445n4UcaevfjRTGW5tCuKsMVacWUFjpCEqA4E68ucynDAKm0+Ct/L/3xg+MwZri978BzWW4J+gbArrcTSnCJrH/xbqxY27Gv59XkTZ4ncFgPesAA4IyXcfuPbXsE5rYbvE9JSdJLdbr3bkcVPRQjK+1aPVvipFQVY5r+gZXSxK4KUvmQh85AVVL1m0lFgppiJbUCCMUETKrNCyz9SAEy8O1DQbAEp6x8biim7FFQ4pfLc+Y39Y1vs4Acrv0810ZcOJekw7l0lj9o4i9F4tA61mR6EFNrPwBU0JEzokPieURFS4Ue6uQD4+fFvyRt4Uk3P10Kn8ZwhOREzmRWklFLlFg8EeHOHAL/g934b35ae3bKNJmlSFabS9iuAwvDXknKnZ+4sq8FLYvp0MhTiSHPoizga/8FP3nKhT4k5Ltgp9Ng+NhtELJ1EcrCayEjmN6sY0EN6eXNEcsg/8SyTuRwuEh52z/scLIIK8RRfxWWDC9QODS0LW8yiXGC3kig0YPTyTIVxi4CNKZk83CYhIvNS/aj3L6JL8iZ2g/ertJ5QktHTBtIwVAtcIgOqzVN8RmvN+M2naLhX0u3sefcHor7D6Bow0bDSdSHsZKtfC3hfYQ76W1fQNWsXEMdfY8ZGsRHtXN/zspVjvsigAixa98ISaJo8dvzr8E5xx1P86V5OjPpc18c8j+384w6fcoxnoE3xDiSNGey2tyktrOkD7bnam+qy4eJDbkS8qFsKVQ1Ma1Cr6RK36K5t0rxAb2I7i2Tfc7ptL/8FW17bzSXt05ra2t4IHVnzdpMAJy+jC6HctFJdqBW+euQY9oudUe5Djfnp6y9IX8vqEfOOx1sSuLj3SFIm6xKctx86YO0SHLQyhXeg1mMlQkY08gauYPlg/+Cu38leD0Ng8EgrQ2+4yCfsxmf7rf/SgT1DvbCjI8GHdTI7KKOXOEdjpgrth/3uZ/N59Ew5YUwsx/qnzT6wZ/nSF24W1ELHHUVAlhwcCHe4luQ8RsXo4zeoNi2hHjgXVYRPxhWDAiri1+AuXUcBQZ+sT7aabEXtbonP65J9jBCLCvjdeWqq3OWMIO7PecQJhlrzH+mInJ2JLhA3CeSzKXmSghrknRBq1Fg2H9vgBGviLQRozFM+NM+nzzQS9pbQv2i9w2hU0lgCOZoNWL6DRUz3BaFk43MyUrwR/gZe9wmD4jAwklKX0aInNKCnb9A5imVBE/hxsiqGccaGwYQEFjycKtIF6YxYXmUMIvO4Am56UDUUmHxhDAYTq7KaWbW6TNX0d4KV6JnZG2YVVM5+cfCVvmUnlYPAN/enaNaskPLR2ZJWKglMTpE2Cuw5Dwq1+oVF7nYXDlwP273uFnjz3deMhmuOEaBrdDTvae/tNGXMeZGFz2xQcl61xKGXR9X6EzbwUGDmZuYwgNDvMhpcpmVofDLmvUZtn5iFct9bVsanXopNqaKz50vBuYQs4Qp93p5SVjPKusiiiGeFsGuL5GTYiYelGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUS4B1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
30
+ "dtype": "float32",
31
+ "_shape": [
32
+ 4
33
+ ],
34
+ "low": "[-1. -1. -1. -1.]",
35
+ "high": "[1. 1. 1. 1.]",
36
+ "bounded_below": "[ True True True True]",
37
+ "bounded_above": "[ True True True True]",
38
+ "_np_random": "RandomState(MT19937)"
39
+ },
40
+ "n_envs": 4,
41
+ "num_timesteps": 200000,
42
+ "_total_timesteps": 200000,
43
+ "_num_timesteps_at_start": 0,
44
+ "seed": null,
45
+ "action_noise": null,
46
+ "start_time": 1676681863363271479,
47
+ "learning_rate": {
48
+ ":type:": "<class 'function'>",
49
+ ":serialized:": "gAWVJwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAktDQwh8AGQBFABTAJRORz9QYk3S8an8hpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMPi9ob21lL3JvYmVydG8vZ2l0cy9ub3RlYm9va3MvdW5pdDZfcGlja2FuZHBsYWNlX3NhY192ZWNwcm9jLnB5lIwQbGluZWFyX3NjaGVkdWxlcpRLEkMCAAGUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaAx1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgXfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lGgKjAhidWlsdGluc5SMBWZsb2F0lJOUc4wOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
50
+ },
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVJwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAktDQwh8AGQBFABTAJRORz9QYk3S8an8hpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMPi9ob21lL3JvYmVydG8vZ2l0cy9ub3RlYm9va3MvdW5pdDZfcGlja2FuZHBsYWNlX3NhY192ZWNwcm9jLnB5lIwQbGluZWFyX3NjaGVkdWxlcpRLEkMCAAGUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaAx1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgXfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lGgKjAhidWlsdGluc5SMBWZsb2F0lJOUc4wOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeMujv9Dqxr8wsBQ9mxwWv6Ruib4wsBQ9zka/v+mlp78wsBQ9w/2sP3u/zz8wsBQ9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvbUPvjlOqD/N+00/fUogP77qjj8W95u+LJnUPwh6dD//l74/xXrEv4bI1L/siKY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAD81P4+Vu4ovmmdYL1weJU+FM5MvQG3CL0ifoK/eMujv9Dqxr8wsBQ9oelNvElUHLzMHgO6suZdPFP8bbtoOa489XkQun9d8Lsl0c+6/NT+PlbuKL5pnWC9cHiVPhTOTL0Btwi9In6Cv5scFr+kbom+MLAUPaHpTbxJVBy8zB4DurLmXTxT/G27aDmuPPV5ELp/XfC7JdHPuvzU/j5W7ii+aZ1gvXB4lT4Uzky9AbcIvSJ+gr/ORr+/6aWnvzCwFD2h6U28SVQcvMweA7qy5l08U/xtu2g5rjz1eRC6f13wuyXRz7r81P4+Vu4ovmmdYL1weJU+FM5MvQG3CL0ifoK/w/2sP3u/zz8wsBQ9oelNvElUHLzMHgO6suZdPFP8bbtoOa489XkQun9d8Lsl0c+6lGgOSwRLE4aUaBJ0lFKUdS4=",
59
+ "achieved_goal": "[[-1.2796469 -1.5540409 0.03630084]\n [-0.586374 -0.26842225 0.03630084]\n [-1.4943483 -1.3097507 0.03630084]\n [ 1.3514942 1.623031 0.03630084]]",
60
+ "desired_goal": "[[-0.14034171 1.3148872 0.8046234 ]\n [ 0.6261366 1.1165388 -0.3046195 ]\n [ 1.6609244 0.95498705 1.4890136 ]\n [-1.5349966 -1.6623695 0.32526338]]",
61
+ "observation": "[[ 4.97718692e-01 -1.64971679e-01 -5.48376180e-02 2.91934490e-01\n -5.00012189e-02 -3.33776511e-02 -1.01947427e+00 -1.27964687e+00\n -1.55404091e+00 3.63008380e-02 -1.25679085e-02 -9.54157952e-03\n -5.00184251e-04 1.35437716e-02 -3.63137270e-03 2.12676078e-02\n -5.51133708e-04 -7.33536435e-03 -1.58551766e-03]\n [ 4.97718692e-01 -1.64971679e-01 -5.48376180e-02 2.91934490e-01\n -5.00012189e-02 -3.33776511e-02 -1.01947427e+00 -5.86373985e-01\n -2.68422246e-01 3.63008380e-02 -1.25679085e-02 -9.54157952e-03\n -5.00184251e-04 1.35437716e-02 -3.63137270e-03 2.12676078e-02\n -5.51133708e-04 -7.33536435e-03 -1.58551766e-03]\n [ 4.97718692e-01 -1.64971679e-01 -5.48376180e-02 2.91934490e-01\n -5.00012189e-02 -3.33776511e-02 -1.01947427e+00 -1.49434829e+00\n -1.30975068e+00 3.63008380e-02 -1.25679085e-02 -9.54157952e-03\n -5.00184251e-04 1.35437716e-02 -3.63137270e-03 2.12676078e-02\n -5.51133708e-04 -7.33536435e-03 -1.58551766e-03]\n [ 4.97718692e-01 -1.64971679e-01 -5.48376180e-02 2.91934490e-01\n -5.00012189e-02 -3.33776511e-02 -1.01947427e+00 1.35149419e+00\n 1.62303102e+00 3.63008380e-02 -1.25679085e-02 -9.54157952e-03\n -5.00184251e-04 1.35437716e-02 -3.63137270e-03 2.12676078e-02\n -5.51133708e-04 -7.33536435e-03 -1.58551766e-03]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAF7TsvewlD74K16M8F0hZvZf2wLwK16M8iC4KvsEP8b0K16M8bVP5PXj/Fj4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/4QavPIy6z1gVxE+BBVqPZ3sxz2pNYw9h5AWPosxqz3pwj8+KbYFvkUkE77Wp+E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAF7TsvewlD74K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAABdIWb2X9sC8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACILgq+wQ/xvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAbVP5PXj/Fj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
70
+ "achieved_goal": "[[-0.11557787 -0.1397931 0.02 ]\n [-0.05304727 -0.02355508 0.02 ]\n [-0.13494313 -0.11770583 0.02 ]\n [ 0.12174115 0.14745891 0.02 ]]",
71
+ "desired_goal": "[[-0.00943112 0.11484326 0.14193487]\n [ 0.05714895 0.09761927 0.06846172]\n [ 0.1470357 0.08359059 0.18726696]\n [-0.1305777 -0.14369304 0.1101834 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1557787e-01\n -1.3979310e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.3047266e-02\n -2.3555083e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.3494313e-01\n -1.1770583e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2174115e-01\n 1.4745891e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 4000,
75
+ "use_sde": true,
76
+ "sde_sample_freq": 8,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXW+bqRBfEsCUhpRSlIwBbJRLMowBdJRHQIQ1wVsUIs11fZQoaAZoCWgPQwifru5YbAskwJSGlFKUaBVLMmgWR0CENVIq9XcQdX2UKGgGaAloD0MIFEGchxOgJcCUhpRSlGgVSzJoFkdAhDTh2fTTfHV9lChoBmgJaA9DCMwNhjqsQCTAlIaUUpRoFUsyaBZHQIQ0byz5XU91fZQoaAZoCWgPQwgf+BisOM0owJSGlFKUaBVLMmgWR0CEOulzltCRdX2UKGgGaAloD0MIKO/jaI48KcCUhpRSlGgVSzJoFkdAhDp4qPOpsHV9lChoBmgJaA9DCI1HqYQnFBbAlIaUUpRoFUsyaBZHQIQ6BqIrOJN1fZQoaAZoCWgPQwjmeXB31gYjwJSGlFKUaBVLMmgWR0CEOZQ0GeMAdX2UKGgGaAloD0MIQIhkyLFdIMCUhpRSlGgVSzJoFkdAhEBClBQem3V9lChoBmgJaA9DCOYivhOzHhjAlIaUUpRoFUsyaBZHQIQ/0gU1yeZ1fZQoaAZoCWgPQwiyZI7lXXXxv5SGlFKUaBVLMmgWR0CEP2AbQ1JldX2UKGgGaAloD0MIXFmis8wKK8CUhpRSlGgVSzJoFkdAhD7tnoPkJnV9lChoBmgJaA9DCIC3QILiNyDAlIaUUpRoFUsyaBZHQIRF8ma6ST11fZQoaAZoCWgPQwhEMXkDzAQwwJSGlFKUaBVLMmgWR0CERYHVwxWUdX2UKGgGaAloD0MI6DI1Cd7gJcCUhpRSlGgVSzJoFkdAhEUP8AJb+3V9lChoBmgJaA9DCED8/Pfg3SXAlIaUUpRoFUsyaBZHQIREnK4hEBt1fZQoaAZoCWgPQwgPYmcKndcfwJSGlFKUaBVLMmgWR0CES2w22oegdX2UKGgGaAloD0MIyGEwf4X8I8CUhpRSlGgVSzJoFkdAhEr8feUILXV9lChoBmgJaA9DCAtjC0EOihHAlIaUUpRoFUsyaBZHQIRKirPt2LZ1fZQoaAZoCWgPQwgL0SFwJLggwJSGlFKUaBVLMmgWR0CEShfb9If9dX2UKGgGaAloD0MI6SrdXWfTF8CUhpRSlGgVSzJoFkdAhFD7UXpGF3V9lChoBmgJaA9DCK62Yn/ZdSTAlIaUUpRoFUsyaBZHQIRQirLhaTx1fZQoaAZoCWgPQwg8F0Z6URsOwJSGlFKUaBVLMmgWR0CEUBizcAR1dX2UKGgGaAloD0MIodrgRPT7H8CUhpRSlGgVSzJoFkdAhE+mNipeeHV9lChoBmgJaA9DCD7shQK2oyPAlIaUUpRoFUsyaBZHQIRWV5+pfhN1fZQoaAZoCWgPQwgEBHP0+H0fwJSGlFKUaBVLMmgWR0CEVeahHskZdX2UKGgGaAloD0MI4gFlU67QJcCUhpRSlGgVSzJoFkdAhFV0LDye7XV9lChoBmgJaA9DCOYCl8eaOSXAlIaUUpRoFUsyaBZHQIRVAXoC+111fZQoaAZoCWgPQwhSZK2h1KYuwJSGlFKUaBVLMmgWR0CEW9LkjopydX2UKGgGaAloD0MIhNTt7CvfHsCUhpRSlGgVSzJoFkdAhFthppN9IHV9lChoBmgJaA9DCHSZmgRvmBTAlIaUUpRoFUsyaBZHQIRa70lJHy51fZQoaAZoCWgPQwjhl/p5UyEmwJSGlFKUaBVLMmgWR0CEWny/9Hc2dX2UKGgGaAloD0MIf2q8dJMwJ8CUhpRSlGgVSzJoFkdAhGE2M85jpnV9lChoBmgJaA9DCJ1oVyHlLyrAlIaUUpRoFUsyaBZHQIRgxUBGQS11fZQoaAZoCWgPQwh6bwwBwCkkwJSGlFKUaBVLMmgWR0CEYFNfw7T2dX2UKGgGaAloD0MIYqBrX0CHJsCUhpRSlGgVSzJoFkdAhF/hIFvAGnV9lChoBmgJaA9DCNFbPLznQCfAlIaUUpRoFUsyaBZHQIRmpkZrHlx1fZQoaAZoCWgPQwgzi1BsBc3tv5SGlFKUaBVLMmgWR0CEZjU5uIhydX2UKGgGaAloD0MIN/5EZcPKHsCUhpRSlGgVSzJoFkdAhGXDQRf4RHV9lChoBmgJaA9DCAx3Loz0oijAlIaUUpRoFUsyaBZHQIRlUAvL5h11fZQoaAZoCWgPQwh8mpMXmXAwwJSGlFKUaBVLMmgWR0CEbHuiN83NdX2UKGgGaAloD0MI48EWu30mFsCUhpRSlGgVSzJoFkdAhGwMlLOAy3V9lChoBmgJaA9DCP2jb9I0SCPAlIaUUpRoFUsyaBZHQIRrmpIczZZ1fZQoaAZoCWgPQwhvoMA7+VQwwJSGlFKUaBVLMmgWR0CEayeAd4mkdX2UKGgGaAloD0MIlKMAUTCzMcCUhpRSlGgVSzJoFkdAhHG6dc0Lt3V9lChoBmgJaA9DCOQViJ6UORbAlIaUUpRoFUsyaBZHQIRxSfcvduZ1fZQoaAZoCWgPQwhB740hAFgKwJSGlFKUaBVLMmgWR0CEcNjOLR8ddX2UKGgGaAloD0MIzc03onv+LMCUhpRSlGgVSzJoFkdAhHBmA9V3lnV9lChoBmgJaA9DCPIiE/BrrCHAlIaUUpRoFUsyaBZHQIR3iuGKyfN1fZQoaAZoCWgPQwglA0AVN3YlwJSGlFKUaBVLMmgWR0CEdxopx3mndX2UKGgGaAloD0MIVYUGYtmsI8CUhpRSlGgVSzJoFkdAhHapc5bQkXV9lChoBmgJaA9DCIP8bOS6oSXAlIaUUpRoFUsyaBZHQIR2Nt/FzdV1fZQoaAZoCWgPQwiwq8lTVkMUwJSGlFKUaBVLMmgWR0CEfQIRh+fAdX2UKGgGaAloD0MIQrKACdxiKMCUhpRSlGgVSzJoFkdAhHyRVhkRSXV9lChoBmgJaA9DCJLn+j4cJB7AlIaUUpRoFUsyaBZHQIR8HyqdYnx1fZQoaAZoCWgPQwg+JefEHpoYwJSGlFKUaBVLMmgWR0CEe6wRoRI0dX2UKGgGaAloD0MIr30BvXBnHMCUhpRSlGgVSzJoFkdAhIJuJLuhK3V9lChoBmgJaA9DCEC9GTVfVSDAlIaUUpRoFUsyaBZHQISB/QY1pCd1fZQoaAZoCWgPQwjHEWvxKcADwJSGlFKUaBVLMmgWR0CEgYrbQC0XdX2UKGgGaAloD0MIwmosYW0sBsCUhpRSlGgVSzJoFkdAhIEYYrJ8v3V9lChoBmgJaA9DCNYCe0ykVAzAlIaUUpRoFUsyaBZHQISIW67NB4V1fZQoaAZoCWgPQwhXlugsszglwJSGlFKUaBVLMmgWR0CEh+rVe8f3dX2UKGgGaAloD0MIYjB/hcwFE8CUhpRSlGgVSzJoFkdAhId48dPtUnV9lChoBmgJaA9DCH12wHXFRCjAlIaUUpRoFUsyaBZHQISHB/CqIad1fZQoaAZoCWgPQwi2LjVCP7MawJSGlFKUaBVLMmgWR0CEjaCqZML4dX2UKGgGaAloD0MIb7vQXKcBI8CUhpRSlGgVSzJoFkdAhI0vUBnzx3V9lChoBmgJaA9DCGXjwRa7pSbAlIaUUpRoFUsyaBZHQISMvW1+iJx1fZQoaAZoCWgPQwjEW+ffLnsbwJSGlFKUaBVLMmgWR0CEjEqBEroXdX2UKGgGaAloD0MI61T5npGIKMCUhpRSlGgVSzJoFkdAhJNIRRMviHV9lChoBmgJaA9DCFa5UPnXohTAlIaUUpRoFUsyaBZHQISS2aBqbjN1fZQoaAZoCWgPQwiSCI1g45ocwJSGlFKUaBVLMmgWR0CEkmeV9nbqdX2UKGgGaAloD0MISbvRx3xwFMCUhpRSlGgVSzJoFkdAhJH07Sy+pXV9lChoBmgJaA9DCEvmWN5VDynAlIaUUpRoFUsyaBZHQISYqEg4ffZ1fZQoaAZoCWgPQwhdNGQ8Sj0uwJSGlFKUaBVLMmgWR0CEmDbu+h4/dX2UKGgGaAloD0MInBTmPc4sKMCUhpRSlGgVSzJoFkdAhJfE8q4H5nV9lChoBmgJaA9DCNqs+lxtZQLAlIaUUpRoFUsyaBZHQISXUyvcJt11fZQoaAZoCWgPQwhn0xHAzZIXwJSGlFKUaBVLMmgWR0CEnfF5OafBdX2UKGgGaAloD0MItixfl+GvKMCUhpRSlGgVSzJoFkdAhJ2ALJCBw3V9lChoBmgJaA9DCFpiZTTyyRHAlIaUUpRoFUsyaBZHQISdDjvNNah1fZQoaAZoCWgPQwgPuK6YEa4owJSGlFKUaBVLMmgWR0CEnJvrGBFvdX2UKGgGaAloD0MI8nowKT7+8b+UhpRSlGgVSzJoFkdAhKN/OdGy5nV9lChoBmgJaA9DCKQ4Rx0dbyTAlIaUUpRoFUsyaBZHQISjDmlqJuV1fZQoaAZoCWgPQwhMqrab4EslwJSGlFKUaBVLMmgWR0CEop6/qPfbdX2UKGgGaAloD0MIychZ2NN+JsCUhpRSlGgVSzJoFkdAhKIsaCL/CXV9lChoBmgJaA9DCJTA5hw88yLAlIaUUpRoFUsyaBZHQISoyNsFdLR1fZQoaAZoCWgPQwgAVdy4xYwawJSGlFKUaBVLMmgWR0CEqFg9/z8QdX2UKGgGaAloD0MIdoh/2NLjHcCUhpRSlGgVSzJoFkdAhKfmXw9aEHV9lChoBmgJaA9DCBmRKLSsexnAlIaUUpRoFUsyaBZHQISnc8Tzund1fZQoaAZoCWgPQwjYt5OI8C8RwJSGlFKUaBVLMmgWR0CErlk/8l5XdX2UKGgGaAloD0MIuI/cmnRLKcCUhpRSlGgVSzJoFkdAhK3pYs/Y8XV9lChoBmgJaA9DCKmieJW1rS7AlIaUUpRoFUsyaBZHQISteZ5Rjz91fZQoaAZoCWgPQwisjEY+rzjwv5SGlFKUaBVLMmgWR0CErQcwxnFpdX2UKGgGaAloD0MIbXL4pBOBI8CUhpRSlGgVSzJoFkdAhLPb3Gn4wnV9lChoBmgJaA9DCGIvFLAdTBLAlIaUUpRoFUsyaBZHQISzatV7x/d1fZQoaAZoCWgPQwh0toDQejgPwJSGlFKUaBVLMmgWR0CEsvkpZwGXdX2UKGgGaAloD0MIu+8YHvvpK8CUhpRSlGgVSzJoFkdAhLKGAbyYonV9lChoBmgJaA9DCJT6srRTVzHAlIaUUpRoFUsyaBZHQIS5IVj7Q9l1fZQoaAZoCWgPQwjQY5RnXkYmwJSGlFKUaBVLMmgWR0CEuLAt4A0bdX2UKGgGaAloD0MI5dL4hVeCM8CUhpRSlGgVSzJoFkdAhLg+e4Cp33V9lChoBmgJaA9DCL06x4DsnSfAlIaUUpRoFUsyaBZHQIS3y9ytFKF1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUZS4="
85
+ },
86
+ "_n_updates": 47500,
87
+ "buffer_size": 1000000,
88
+ "batch_size": 256,
89
+ "learning_starts": 10000,
90
+ "tau": 0.005,
91
+ "gamma": 0.95,
92
+ "gradient_steps": 1,
93
+ "optimize_memory_usage": false,
94
+ "replay_buffer_class": {
95
+ ":type:": "<class 'abc.ABCMeta'>",
96
+ ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
97
+ "__module__": "stable_baselines3.common.buffers",
98
+ "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
99
+ "__init__": "<function DictReplayBuffer.__init__ at 0x7f3deb519430>",
100
+ "add": "<function DictReplayBuffer.add at 0x7f3deb5194c0>",
101
+ "sample": "<function DictReplayBuffer.sample at 0x7f3deb519550>",
102
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f3deb5195e0>",
103
+ "__abstractmethods__": "frozenset()",
104
+ "_abc_impl": "<_abc._abc_data object at 0x7f3deb51c380>"
105
+ },
106
+ "replay_buffer_kwargs": {},
107
+ "train_freq": {
108
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
109
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
110
+ },
111
+ "use_sde_at_warmup": false,
112
+ "target_entropy": {
113
+ ":type:": "<class 'numpy.float32'>",
114
+ ":serialized:": "gAWVZQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAACAwJSGlFKULg=="
115
+ },
116
+ "ent_coef": "auto",
117
+ "target_update_interval": 1,
118
+ "batch_norm_stats": [],
119
+ "batch_norm_stats_target": []
120
+ }
PandaPickAndPlaceSAC-n2/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca37d19c432d1c986e436faf8422be1bc9099bd2d55e39d2481d88b57d0246d7
3
+ size 1507
PandaPickAndPlaceSAC-n2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3490063aae7fddb09280f323f817f2920d770b8b112dc716114ef90d8485c546
3
+ size 534664
PandaPickAndPlaceSAC-n2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95c5f6a7181540218b068eafb1d06d41185fb3291bed8723cdbfb5c23dd86ee8
3
+ size 747
PandaPickAndPlaceSAC-n2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-60-generic-x86_64-with-glibc2.35 # 66-Ubuntu SMP Fri Jan 20 14:29:49 UTC 2023
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaPickAndPlaceDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -9.60 +/- 3.16
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaPickAndPlaceDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -8.84 +/- 3.11
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7fda29986670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fda29985840>"}, "verbose": 1, "policy_kwargs": {"net_arch": [300, 200], "use_sde": true}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWV1AMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLE4WUaBpoHSiWTAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlGgVSxOFlGggdJRSlGgjaB0olkwAAAAAAAAAAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQZRoFUsThZRoIHSUUpRoKGgdKJYTAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQGUaCxLE4WUaCB0lFKUaDJoHSiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGgsSxOFlGggdJRSlGg3TnVidWgYTmgQTmg3TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.\n 10.], (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV/gsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAC9bLuluxD7pubZzIh43ffBIJFBo1m0vI+PxuaMftAvTWHvR/Drj3UnKm62oZ793Y7WsL8Qk+Xx8UGIi21iY8J5/jdEQmcQ6nYziWxHw45adDrBVyuQHVpxYbsShGb1bwlgjV0KwdINdUcl28r0Ty1LQzrLDWBpIbD0KjkeniOhSfYPlwCK/5m2NuASxC1M5HYUOgIZnJkY59mxcNDXvoR3tGJaTHKgHhxBHdEzXVMJePXob2GkcwY3gSVQcbGjmHThQ9efLCCEazh5SG7hCOUc8T7JQDPT5qx8ll4CRaOQxggRn9orwMMVn3rXk3uJP7A4YNMRMMmqT4Am/BCDJPW3fgkVAu3IOBZ+rFjvheScblTRLXtLO/pMGV0VrlYZcdkat/weweRDvH4F62lyRmrbNvLRejwNd/aRAAyzXmS8yF71jxSYgi+DeaqBUop0+EY7xkoVHsC2lg3D8SGjIApp3urrY3xYBazLba2XPECp2WjfoDu4JP1GfOzAL4mtQxsywKQSyQa9ion5Q2AAj6tH5ce1sROmHcwk7Ue9TWL8ZKv4GMUZdS+1pMygH/P8HAtluIJos4fjKBfDkS5GkSXMJra6C5qRL8Y4i0Df5sZBejzFwWYaahIQFqaLLczJCIE9At0UBCuxyfCZ1dN34eGa8elp0bRd14MoSzoaM4Y8Im9Ql5Lj1Rpi9ePQC2mYflU3f4Yek/eLCxGD758OLTRgFtAF/deAA1u5JptF4IQnzPcrMQ07pSwgj4FF2zOZ5DgcO3kc84CK+3n07lgHiJiYG/2yn7V/5pDtqgqVvE0+IiCPbkeU8lXTouZAahzD2C4L0RKV4+ACC+85u1hdih0nfziLTALNJjP2dZdp37NL2i/mlO9SmXxrTwwpJGt56u6MrTM2ss7IBS4UloFrrSjI9IZ+Yrj9gEOogyecvVmqrWezirDgGKbOVtjltLQ21YxQoAg7fXFNWWvH+eWMRvZJlTVmiy0SecAvlHURbjV/do6xdRLUtkGFl1GmOfTlCQeTwn7ChM3TO/BN/qevNydniAU/O6ceOQCT7p8nwqnS3qR0YSdcIt7AmXLWoFmNLgSe3I5CHmiOieJEIcFpL46ngbjoLKesgnxllC5tBFWWHxkbXopw4eMzJob2UbzJJLvIphb74epSwguWRGnzbZurRGZxLWMOH/MWItPaWKV5HlSmr67/zNC/sRB3JjFAwhfEszywwh8PEu1xgDtZAWOSWD5uve/rg3VUB1Lt/P9BkLGyOhHk1r9aKGqbBzooOOPA+hxZu2opRTWzkIwBrKKlJvZbMiIpY5dgtL8VNSsakzcwRCa8NyHcE+cXlEslmswVpiDbqHnYBWcv7UF3z3chkGb8iFOEqtoe8LKkQP3UwXYt981Ha6nJmiIz4ghJ0OVeHXJlRckY6OwFE8s7V0vnCFSZJPY5Ft7xJs95p40AnyHSfcTwx5OvBk/x9semNLAcACczYEiK57/4MAUtvfUMXmkAx7PyUiIOalkmMicCYf9N2eP4FNJaBUOhNnfFczvUALoJoRFHHuiZtUOEh6XjS2TqG/xKGJvQze5sKHT+z1ZYs/N8/3kas3pcTdnGMerTB6RRttmmhuQ+dcPQLM9EbV0+RzyiQmTYlvehzYIy/Reu7VdS5ugnB5nCKg4KFFdyKzWTXP1Avw/NPFc146y4vU3Ad6XvCT4WVaKDmdKNOf+Tni5waSskajG5vpHVqTs/vaYfU2XTkLtGih9pFo+Ksc6UViskVoW9uf9xYxbbWAsjPahZDkl65XP05iIUqiX8r91G/pD+TCWax6/f143XNR/6HgLDHXH6TcoxSKNbVVIkvt4Xcpf3Oxz9hA8clvZzsY7qW1XNxVTIAwrzTnhBruNv/guUZuHfrMMpEthu/n6pwnv/uHs5AqDxmHTuUZBNqPgaG3WBFD00OTslHkf00smA5OWeHb3yRr56iLEa7munS1cLYi3J6Ga07s202KPsuuwvZYEXXEyr1/vdV1h3okA4qtPgZI/6QO7MTIaZdGCAnuY3XsQf8SN9x8YZaypu1H4CI4AMnGsKLG4pFVbuUVI3xA2rqn7Afx3x9o5eCE2w4BjyjTJywAtZrUwSAz4kVRSy4NL04HH3Ukbwp1P1R9Je6g+EXydGb35jMiElmv0iib2de1Y+9AK1wyCy8+iWVbnosRiszAEsQ4ac7Cs4InVHh+yJpM27jYDbEseKf6aYIItTLkYHOpU9xFupTYiulZ8Fg4OjhkOoGwKXhC0Lo4JB4Jx8BThuOsfGTyAvF6y+8GawTl7MUPdr/Tc6o4BJtSmJgE1wYKb/XBUzwxJAlJb+QBpLMy20RKf8uraopTE1jEBJkHpHgyaBe78/jjEa4zTVel9+CohMa4VwDfQ608tkOdGpsRZCyT5tIqGWsLnTAVwad4TDH53z+TSkI/GL6XhDqs2qy/9JJI1xvSH6IPoEIxyJJgDdV3lJI/V9IjL/lq3b3JXgcuNfZoJ9Y+qWaJ+XDQOaLVSk1Y2DS/imapp7ME3I+lPgT0+SJYxjRIa8oZbUx1a6fqXwniiGCfgFz724pQhihLVbK3DWZ8urI9xJ20y9oTM876Z6DCxUAnrIqHUh/rFzewXe8iATJ6UNC9rg2FjXy16QRqoffNUYyqCtNYtDmQViFc2nCTBWBK/woMk1ef6LOht1RF8XQLieY1YJ2s9prmGsVnivuGG57Z+vvbLnlU+9Y+mCHlbnNMPoODEWLA2V6ExoEwC0JGn8x7gZflU7JuEtsnJpST1B4cUVjJwFPabuVZxn7zKsatOFeTrva335kAfaeG/z5PAQD5LJokvwAIqrfa7F+QR1XfQQfBOiw8kP2qNLvzRiWxmX3TQBC1nwkPMvR7qpk8dS65HUlBTx1ScaZf18UYSQ0NfgSO89CGF8obXF13o8JfbAncclrAo27eEkbFPhGuqbR+Xs5XPgnd2mj3oHYzCcj4spKizcMnYymvWoW5oR8JNlaK7n0VL9e29awZJW8bIJUkhujgfc/2rbmsofVAk7yuXhyrOPWS5w09RYAv3T0t2rJXNWOf8Zqet36Iu0FAuqHjWSEaxPpkXls7TtFXKRVik3V9Pg3zlbSPyYlVHdRzyaXgGAfpEWTE1mOG/bn1vNx0oXPRnvaa93o2AJp1prmFLRy6hjhKD//yn3SZS7gzHpfZmrthaUALk4zk/5RdhmaFW+ovaRKVu2oH0zqFTEKbMVLSY1fak9QXMJlcoIFUxGBZxhiPBmOyNtZ09mLHAy7rPKV/dfNeYqAV3G1DEkr+xQRulBYpNWd9TuLziMi2f1RsBp6eCUEWDxPHjgSlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUS4B1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676678437622262968, "learning_rate": 0.00078, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3JvYmVydG8vbWluaWNvbmRhMy9lbnZzL2d5bV9odWdnaW5nL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9yb2JlcnRvL21pbmljb25kYTMvZW52cy9neW1faHVnZ2luZy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9Jjx0+1SflhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVXwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAeMKnvBkzz70K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAA3NswPTAZwzwK16M8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWTAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAeMKnvBkzz70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwFLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.02047847 -0.10117168 0.02 ]]", "desired_goal": "[[0.04317842 0.02381572 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.0478472e-02\n -1.0117168e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVXwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAeMKnvBkzz70K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAA3NswPTAZwzwK16M8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWTAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAeMKnvBkzz70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwFLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.02047847 -0.10117168 0.02 ]]", "desired_goal": "[[0.04317842 0.02381572 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.0478472e-02\n -1.0117168e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 4000, "use_sde": true, "sde_sample_freq": 8, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2Lj+XZ+hI8CUhpRSlIwBbJRLMowBdJRHQJ4ATqs2ehB1fZQoaAZoCWgPQwiOI9biUyAZwJSGlFKUaBVLMmgWR0CeAj/5+H8CdX2UKGgGaAloD0MIzVmfckwGG8CUhpRSlGgVSzJoFkdAngQvA0sOG3V9lChoBmgJaA9DCP1OkxlvKxfAlIaUUpRoFUsyaBZHQJ4F9VKf4AV1fZQoaAZoCWgPQwhZ2qm53EAiwJSGlFKUaBVLMmgWR0CeB92bobGWdX2UKGgGaAloD0MI7WEvFLD1J8CUhpRSlGgVSzJoFkdAngmmahHsknV9lChoBmgJaA9DCIj1Rq0wPSPAlIaUUpRoFUsyaBZHQJ4LdYyO7xx1fZQoaAZoCWgPQwgSZ0XURHcjwJSGlFKUaBVLMmgWR0CeDT7NB4UvdX2UKGgGaAloD0MIg9pv7UQ1NMCUhpRSlGgVSzJoFkdAng8YOtnwonV9lChoBmgJaA9DCC3t1FxugCHAlIaUUpRoFUsyaBZHQJ4Q+m3vx6R1fZQoaAZoCWgPQwjL8nUZ/gMYwJSGlFKUaBVLMmgWR0CeEt2YfGModX2UKGgGaAloD0MI/tXjvtW6F8CUhpRSlGgVSzJoFkdAnhS3AIppe3V9lChoBmgJaA9DCIYfnE8dGyjAlIaUUpRoFUsyaBZHQJ4Wi/8EV351fZQoaAZoCWgPQwgBF2TL8vUIwJSGlFKUaBVLMmgWR0CeGH6dDpkgdX2UKGgGaAloD0MI1LZhFATHKcCUhpRSlGgVSzJoFkdAnhptzr/sFHV9lChoBmgJaA9DCOeLvRdfrCfAlIaUUpRoFUsyaBZHQJ4cYV9F4LV1fZQoaAZoCWgPQwjn4QSm01oWwJSGlFKUaBVLMmgWR0CeHl6p5u63dX2UKGgGaAloD0MIDOpb5nQBKsCUhpRSlGgVSzJoFkdAniCA2MsH0XV9lChoBmgJaA9DCJBPyM7bACLAlIaUUpRoFUsyaBZHQJ4ieirT6SF1fZQoaAZoCWgPQwja5PBJJ2oiwJSGlFKUaBVLMmgWR0CeJEw4bS7YdX2UKGgGaAloD0MI8E3TZwf8EsCUhpRSlGgVSzJoFkdAniYvp+tr9HV9lChoBmgJaA9DCKkT0ETYIBbAlIaUUpRoFUsyaBZHQJ4oBoFmnO11fZQoaAZoCWgPQwhvnBTmPe4gwJSGlFKUaBVLMmgWR0CeKfRRdhRZdX2UKGgGaAloD0MI3ncMj/1ENMCUhpRSlGgVSzJoFkdAnivRAOavzXV9lChoBmgJaA9DCECKOnMPCRrAlIaUUpRoFUsyaBZHQJ4tq7xusLh1fZQoaAZoCWgPQwifWKfK93wRwJSGlFKUaBVLMmgWR0CeL3s3hn8LdX2UKGgGaAloD0MI1XWopiRjK8CUhpRSlGgVSzJoFkdAnjFqAWi1zHV9lChoBmgJaA9DCN44Kcx7DBvAlIaUUpRoFUsyaBZHQJ4zkAo5PuZ1fZQoaAZoCWgPQwh2qRH6mdolwJSGlFKUaBVLMmgWR0CeNZhpQDV6dX2UKGgGaAloD0MIn1kSoKY+JcCUhpRSlGgVSzJoFkdAnjdzIzWPLnV9lChoBmgJaA9DCFEv+DQnlyjAlIaUUpRoFUsyaBZHQJ45V4lhPTJ1fZQoaAZoCWgPQwiqEI/Ey3MOwJSGlFKUaBVLMmgWR0CeOxA5aNdadX2UKGgGaAloD0MIck9XdywmGcCUhpRSlGgVSzJoFkdAnjzGB4D9wXV9lChoBmgJaA9DCCZw626eah/AlIaUUpRoFUsyaBZHQJ4+l9Wp6yB1fZQoaAZoCWgPQwg0uRgD63gUwJSGlFKUaBVLMmgWR0CeQEzVMEiddX2UKGgGaAloD0MImPkOfuJQHsCUhpRSlGgVSzJoFkdAnkIjqSowVXV9lChoBmgJaA9DCIY41sVtrCXAlIaUUpRoFUsyaBZHQJ5EG8M/hVF1fZQoaAZoCWgPQwixw5j090oiwJSGlFKUaBVLMmgWR0CeRe3j+717dX2UKGgGaAloD0MIhGbXvRWhKMCUhpRSlGgVSzJoFkdAnkew9vCMxXV9lChoBmgJaA9DCEfM7PMYhQzAlIaUUpRoFUsyaBZHQJ5Jfvw3HaN1fZQoaAZoCWgPQwgaahSSzHIhwJSGlFKUaBVLMmgWR0CeS2EKVpsXdX2UKGgGaAloD0MIA7LXuz8uLsCUhpRSlGgVSzJoFkdAnk1A0j1PFnV9lChoBmgJaA9DCIfEPZY+FBzAlIaUUpRoFUsyaBZHQJ5PH9P1tfp1fZQoaAZoCWgPQwhHWFTE6SQrwJSGlFKUaBVLMmgWR0CeUPJ2t+1CdX2UKGgGaAloD0MI+YOB594LM8CUhpRSlGgVSzJoFkdAnlLHZK3/gnV9lChoBmgJaA9DCHsRbcfUnRPAlIaUUpRoFUsyaBZHQJ5UppSJj2B1fZQoaAZoCWgPQwg6It+l1E0mwJSGlFKUaBVLMmgWR0CeVnpqh11XdX2UKGgGaAloD0MIu9QI/Uz9BcCUhpRSlGgVSzJoFkdAnlhw6+36RHV9lChoBmgJaA9DCFJ/vcKCey7AlIaUUpRoFUsyaBZHQJ5aSuTzNEB1fZQoaAZoCWgPQwjx8QnZeesfwJSGlFKUaBVLMmgWR0CeXCophF3IdX2UKGgGaAloD0MITKjg8IKIGcCUhpRSlGgVSzJoFkdAnl4M0tRNy3V9lChoBmgJaA9DCEg0gSIWwRzAlIaUUpRoFUsyaBZHQJ5f3SThYNl1fZQoaAZoCWgPQwgbRkHw+JYHwJSGlFKUaBVLMmgWR0CeYdeFL39KdX2UKGgGaAloD0MIiX0CKEYWK8CUhpRSlGgVSzJoFkdAnmOv3FkxynV9lChoBmgJaA9DCOl942vPPCvAlIaUUpRoFUsyaBZHQJ5lp+DvmYB1fZQoaAZoCWgPQwg0aVN1jwwRwJSGlFKUaBVLMmgWR0CeZ3qNp/PPdX2UKGgGaAloD0MIFMyYgjWuGMCUhpRSlGgVSzJoFkdAnmlTaGpMpXV9lChoBmgJaA9DCMuFyr+WfyTAlIaUUpRoFUsyaBZHQJ5rJ0Lc9GJ1fZQoaAZoCWgPQwjb39kevZEawJSGlFKUaBVLMmgWR0CebSG8EmpmdX2UKGgGaAloD0MIi/7QzJNzLcCUhpRSlGgVSzJoFkdAnm8HlCCz1XV9lChoBmgJaA9DCBADXfsCiinAlIaUUpRoFUsyaBZHQJ5w2CcwxnF1fZQoaAZoCWgPQwj8UdSZe2gkwJSGlFKUaBVLMmgWR0Cecs1JDmbLdX2UKGgGaAloD0MIrvIEwk6hLcCUhpRSlGgVSzJoFkdAnnS1ruYx+XV9lChoBmgJaA9DCLxYGCKn/y/AlIaUUpRoFUsyaBZHQJ52hx6v7nB1fZQoaAZoCWgPQwh7L75oj5ciwJSGlFKUaBVLMmgWR0CeeHM6RyOrdX2UKGgGaAloD0MIct9qnbiMGcCUhpRSlGgVSzJoFkdAnnpjQAuIynV9lChoBmgJaA9DCP/NixNfDSHAlIaUUpRoFUsyaBZHQJ58M5BC2MN1fZQoaAZoCWgPQwilFd9Q+MwrwJSGlFKUaBVLMmgWR0CefgtDD0lJdX2UKGgGaAloD0MI6ZrJN9usH8CUhpRSlGgVSzJoFkdAnoABoM8YAXV9lChoBmgJaA9DCArbT8b4KCjAlIaUUpRoFUsyaBZHQJ6CCm1pj+d1fZQoaAZoCWgPQwikjLgANCoZwJSGlFKUaBVLMmgWR0Ceg/AcDKYBdX2UKGgGaAloD0MIKV5lbVPsJMCUhpRSlGgVSzJoFkdAnoXoKQaJh3V9lChoBmgJaA9DCKlNnNzvQCTAlIaUUpRoFUsyaBZHQJ6IAK/mDDl1fZQoaAZoCWgPQwicTx2rlN4owJSGlFKUaBVLMmgWR0CeignSfDk3dX2UKGgGaAloD0MI24XmOo3YMsCUhpRSlGgVSzJoFkdAnowg6Mir1nV9lChoBmgJaA9DCPIJ2XkbhzHAlIaUUpRoFUsyaBZHQJ6OOi0v4/N1fZQoaAZoCWgPQwjHZkeq79QkwJSGlFKUaBVLMmgWR0CekKVzp5eJdX2UKGgGaAloD0MIWfj6Wpd6JMCUhpRSlGgVSzJoFkdAnpKgKWszVXV9lChoBmgJaA9DCMXnTrD/OgvAlIaUUpRoFUsyaBZHQJ6Usse4kNZ1fZQoaAZoCWgPQwjgumJGeCsewJSGlFKUaBVLMmgWR0CelqD/EOy3dX2UKGgGaAloD0MIOlrVko6CIcCUhpRSlGgVSzJoFkdAnpjIZZSvT3V9lChoBmgJaA9DCHkkXp7OhSDAlIaUUpRoFUsyaBZHQJ6a8IzFdcB1fZQoaAZoCWgPQwjJrrSM1LMqwJSGlFKUaBVLMmgWR0CenNEDyOJddX2UKGgGaAloD0MIVTIAVHHjJcCUhpRSlGgVSzJoFkdAnp63+dbxE3V9lChoBmgJaA9DCAtGJXUCIiTAlIaUUpRoFUsyaBZHQJ6gsUj9n9N1fZQoaAZoCWgPQwiFzQAXZAsmwJSGlFKUaBVLMmgWR0CeooqQA+6idX2UKGgGaAloD0MIJA7ZQLqoH8CUhpRSlGgVSzJoFkdAnqRr2QGOdXV9lChoBmgJaA9DCLLWUGovQiDAlIaUUpRoFUsyaBZHQJ6mk7xNIsl1fZQoaAZoCWgPQwgsgCkDB/wjwJSGlFKUaBVLMmgWR0CeqK6VdHDrdX2UKGgGaAloD0MIy0dS0sPgJMCUhpRSlGgVSzJoFkdAnqqx0uDjBHV9lChoBmgJaA9DCP+VlSalIPy/lIaUUpRoFUsyaBZHQJ6suIMz/Id1fZQoaAZoCWgPQwgOMsnIWVAgwJSGlFKUaBVLMmgWR0Cerq0uDjBEdX2UKGgGaAloD0MIfuIA+n3HKcCUhpRSlGgVSzJoFkdAnrCPrv9cbHV9lChoBmgJaA9DCBbbpKKxRhDAlIaUUpRoFUsyaBZHQJ6ybRCx/ut1fZQoaAZoCWgPQwiIZp5cUzgjwJSGlFKUaBVLMmgWR0CetG9lmOENdX2UKGgGaAloD0MIQuvhy0SRK8CUhpRSlGgVSzJoFkdAnrZrhWHUMHV9lChoBmgJaA9DCE2iXvBpJinAlIaUUpRoFUsyaBZHQJ64WjTKDCh1fZQoaAZoCWgPQwjf+NozS6ImwJSGlFKUaBVLMmgWR0Ceuk+AVfu1dX2UKGgGaAloD0MIEjKQZ5c/HsCUhpRSlGgVSzJoFkdAnrw+qWC2+nV9lChoBmgJaA9DCFSnA1lPbR7AlIaUUpRoFUsyaBZHQJ6+SbmU4aR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUZS4="}, "_n_updates": 190000, "buffer_size": 300000, "batch_size": 256, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7fda299d1430>", "add": "<function DictReplayBuffer.add at 0x7fda299d14c0>", "sample": "<function DictReplayBuffer.sample at 0x7fda299d1550>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7fda299d15e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fda299ce740>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": {":type:": "<class 'numpy.float32'>", ":serialized:": "gAWVZQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAACAwJSGlFKULg=="}, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.15.0-60-generic-x86_64-with-glibc2.35 # 66-Ubuntu SMP Fri Jan 20 14:29:49 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7f3deb4cf670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3deb4d03c0>"}, "verbose": 1, "policy_kwargs": {"net_arch": [200, 100], "use_sde": true}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWV1AMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLE4WUaBpoHSiWTAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlGgVSxOFlGggdJRSlGgjaB0olkwAAAAAAAAAAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQZRoFUsThZRoIHSUUpRoKGgdKJYTAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQGUaCxLE4WUaCB0lFKUaDJoHSiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGgsSxOFlGggdJRSlGg3TnVidWgYTmgQTmg3TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.\n 10.], (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV/gsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAABmOaQsvfDVB8l17TsT56KN7IqMn23QcOYLF4ZLw2kSldtGgxbfQ49j5w3/TN1X/nYkQl1QZm13pExhW7E+zIcXp+MOZCKWkIoOWVrcci4EfyuAzzCUTLI9PWw6haYsKOGj5v9bMzsUnzhUIQUter6Agbex//LlLyVgrBhhrx/BGuC6adUj4dUO6YU2Vmjf89WCqao2iklVpSjfTf66wNnP9lRN6NFwOAv/0HDFiN1n4bAwOleKRUp80vWXsEBMu5KTI/P01sExZL3OeX6UyTTohuD9kFlPeGxptNdassNixrjRK+ICSY6Mm0p1jozvR1aeTFpfpqet0YGU/i10Qx8dk5aqCi2+e+miiYQIQt2xUaYlSuJL7+lMkHkl5MazP3RuO6KeN4FJ31JzqZiNV+hHMp4pi52ecrly6hmH9vxzW/ksFXCz02F+5lSFr6chP+dGy5V9LNzSYDt6CFDhrtl+EkgSQrFfNenhYM/aOPmJ+yI733X/4o0TGkIgFo2+/lSyTuD2cNlRUqvDGZ4x9QpZyauDxtwrVj1Wyv7xcG5LraKUMdf8hY+ZBQG/Pi5bUCbC1MYclunz8Lgi+feihnBs+VHX4uixnTJbmrfsiBszdRoLaTKBmyGyeZ0ZZXP7bHmPyjx99IGvICFr6Q1cL6wBmRQY+PimMk0ZXR8hkLS+RO9xD/ognNYQmXBOcTN2ZIALCOUcnKItBG+0pJ8cuTh9ZzKIDJRQ0j6dXe1Ws5GDCZm8WyPj287Yqs9clvRZzL3akXpgH2XImF5kUwH/TEjwm+YD0Vnq0As5SPwA/N+zVKqX5osRdifVGtHz/j+jwZKFAUxvhKdfOwcQduuAXRxWWaPhxoJIqDy6ItKux18QDALGMVcSIwaM46lozVCtrElPjn13OxBZU7+xweDNSTU9PfGE3sc7q0V8FV54E5sLaFG99vo4LlZ7ndNP89DPe0w/wnQwOxOrD2j3V+3w1sQNQyk9UAX2c5HjtVI35PZbCjzMvqGBPSyoXYu8ivDz5HcKkHcDyXG58qeXrh2okkMKS1A7JYWWvmtBqriffvOWJHKrOL+9myDk/ewWzraX20dNXYnxVw5DvFkZ7WMf8ekwSRvo6jE3oyaz4b9VyGbQn0M9+W4Bj1KoqO/fEeX4/3WG2xBXQkZhs2ft0MrpgNt3M2CFCBJIR4EoIMtXW2aszqSVfIJQWOxqcmj5F6d+ZKV1bgK5lL6ewYeg2okQZzma2BClw7WnQPMbgpvVNKLaVQbVfM4BI7qPlHRgk0anjMaV5HlWHONbGJSS32klkFbSJGwZBPc5k9CZcNl+c81aRNiAeKhWx+4GLfS8r3K3oB+kQToOF7pKlh7DJfGenX6scIstLdg5SRSzhevJsI2ODr9wORaMqrqfYvYd3kgFjan+rBdJtCjZ+vyOYo4b4TWz1yyKvKeY5h9x4Xil/tH9f0/Ri2FsvwC9kcdxt48Otw8mwjcgVtSXIHJMK7lb/qArvGnr0Ni7LHN6bwANj9tmnhZflGGBKM86b84IX4RUTZgIrxEonluSB8sID0If0mUYg573qZ9V9quiNxPBMsCksUOYsLCJ/8G0UidENCAYs7xKN2D7MhPlq+PQXaQ0e18K8Axt1H3LsOt0mHtgzCAgUltO5R+d+5p2Bml+HEEJIFrYj0MvRAjD+SJtm5P2SZnvkhCuf0SwOdFrGaMLCrce/q1PbvluxmBdD4YUwHGWpOUegyycI/cyuhKEyayiIddLvaUyGWPVnwIH0bMz0+8vfYi19cEyQBTZVC9NRb0TbQt61GGxce8wAqQMjLi+o4bqac3sakMzTb8o9HQkE/445n4UcaevfjRTGW5tCuKsMVacWUFjpCEqA4E68ucynDAKm0+Ct/L/3xg+MwZri978BzWW4J+gbArrcTSnCJrH/xbqxY27Gv59XkTZ4ncFgPesAA4IyXcfuPbXsE5rYbvE9JSdJLdbr3bkcVPRQjK+1aPVvipFQVY5r+gZXSxK4KUvmQh85AVVL1m0lFgppiJbUCCMUETKrNCyz9SAEy8O1DQbAEp6x8biim7FFQ4pfLc+Y39Y1vs4Acrv0810ZcOJekw7l0lj9o4i9F4tA61mR6EFNrPwBU0JEzokPieURFS4Ue6uQD4+fFvyRt4Uk3P10Kn8ZwhOREzmRWklFLlFg8EeHOHAL/g934b35ae3bKNJmlSFabS9iuAwvDXknKnZ+4sq8FLYvp0MhTiSHPoizga/8FP3nKhT4k5Ltgp9Ng+NhtELJ1EcrCayEjmN6sY0EN6eXNEcsg/8SyTuRwuEh52z/scLIIK8RRfxWWDC9QODS0LW8yiXGC3kig0YPTyTIVxi4CNKZk83CYhIvNS/aj3L6JL8iZ2g/ertJ5QktHTBtIwVAtcIgOqzVN8RmvN+M2naLhX0u3sefcHor7D6Bow0bDSdSHsZKtfC3hfYQ76W1fQNWsXEMdfY8ZGsRHtXN/zspVjvsigAixa98ISaJo8dvzr8E5xx1P86V5OjPpc18c8j+384w6fcoxnoE3xDiSNGey2tyktrOkD7bnam+qy4eJDbkS8qFsKVQ1Ma1Cr6RK36K5t0rxAb2I7i2Tfc7ptL/8FW17bzSXt05ra2t4IHVnzdpMAJy+jC6HctFJdqBW+euQY9oudUe5Djfnp6y9IX8vqEfOOx1sSuLj3SFIm6xKctx86YO0SHLQyhXeg1mMlQkY08gauYPlg/+Cu38leD0Ng8EgrQ2+4yCfsxmf7rf/SgT1DvbCjI8GHdTI7KKOXOEdjpgrth/3uZ/N59Ew5YUwsx/qnzT6wZ/nSF24W1ELHHUVAlhwcCHe4luQ8RsXo4zeoNi2hHjgXVYRPxhWDAiri1+AuXUcBQZ+sT7aabEXtbonP65J9jBCLCvjdeWqq3OWMIO7PecQJhlrzH+mInJ2JLhA3CeSzKXmSghrknRBq1Fg2H9vgBGviLQRozFM+NM+nzzQS9pbQv2i9w2hU0lgCOZoNWL6DRUz3BaFk43MyUrwR/gZe9wmD4jAwklKX0aInNKCnb9A5imVBE/hxsiqGccaGwYQEFjycKtIF6YxYXmUMIvO4Am56UDUUmHxhDAYTq7KaWbW6TNX0d4KV6JnZG2YVVM5+cfCVvmUnlYPAN/enaNaskPLR2ZJWKglMTpE2Cuw5Dwq1+oVF7nYXDlwP273uFnjz3deMhmuOEaBrdDTvae/tNGXMeZGFz2xQcl61xKGXR9X6EzbwUGDmZuYwgNDvMhpcpmVofDLmvUZtn5iFct9bVsanXopNqaKz50vBuYQs4Qp93p5SVjPKusiiiGeFsGuL5GTYiYelGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUS4B1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 4, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676681863363271479, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVJwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAktDQwh8AGQBFABTAJRORz9QYk3S8an8hpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMPi9ob21lL3JvYmVydG8vZ2l0cy9ub3RlYm9va3MvdW5pdDZfcGlja2FuZHBsYWNlX3NhY192ZWNwcm9jLnB5lIwQbGluZWFyX3NjaGVkdWxlcpRLEkMCAAGUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaAx1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgXfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lGgKjAhidWlsdGluc5SMBWZsb2F0lJOUc4wOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVJwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAktDQwh8AGQBFABTAJRORz9QYk3S8an8hpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMPi9ob21lL3JvYmVydG8vZ2l0cy9ub3RlYm9va3MvdW5pdDZfcGlja2FuZHBsYWNlX3NhY192ZWNwcm9jLnB5lIwQbGluZWFyX3NjaGVkdWxlcpRLEkMCAAGUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaAx1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgXfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lGgKjAhidWlsdGluc5SMBWZsb2F0lJOUc4wOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAeMujv9Dqxr8wsBQ9mxwWv6Ruib4wsBQ9zka/v+mlp78wsBQ9w/2sP3u/zz8wsBQ9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvbUPvjlOqD/N+00/fUogP77qjj8W95u+LJnUPwh6dD//l74/xXrEv4bI1L/siKY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAD81P4+Vu4ovmmdYL1weJU+FM5MvQG3CL0ifoK/eMujv9Dqxr8wsBQ9oelNvElUHLzMHgO6suZdPFP8bbtoOa489XkQun9d8Lsl0c+6/NT+PlbuKL5pnWC9cHiVPhTOTL0Btwi9In6Cv5scFr+kbom+MLAUPaHpTbxJVBy8zB4DurLmXTxT/G27aDmuPPV5ELp/XfC7JdHPuvzU/j5W7ii+aZ1gvXB4lT4Uzky9AbcIvSJ+gr/ORr+/6aWnvzCwFD2h6U28SVQcvMweA7qy5l08U/xtu2g5rjz1eRC6f13wuyXRz7r81P4+Vu4ovmmdYL1weJU+FM5MvQG3CL0ifoK/w/2sP3u/zz8wsBQ9oelNvElUHLzMHgO6suZdPFP8bbtoOa489XkQun9d8Lsl0c+6lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-1.2796469 -1.5540409 0.03630084]\n [-0.586374 -0.26842225 0.03630084]\n [-1.4943483 -1.3097507 0.03630084]\n [ 1.3514942 1.623031 0.03630084]]", "desired_goal": "[[-0.14034171 1.3148872 0.8046234 ]\n [ 0.6261366 1.1165388 -0.3046195 ]\n [ 1.6609244 0.95498705 1.4890136 ]\n [-1.5349966 -1.6623695 0.32526338]]", "observation": "[[ 4.97718692e-01 -1.64971679e-01 -5.48376180e-02 2.91934490e-01\n -5.00012189e-02 -3.33776511e-02 -1.01947427e+00 -1.27964687e+00\n -1.55404091e+00 3.63008380e-02 -1.25679085e-02 -9.54157952e-03\n -5.00184251e-04 1.35437716e-02 -3.63137270e-03 2.12676078e-02\n -5.51133708e-04 -7.33536435e-03 -1.58551766e-03]\n [ 4.97718692e-01 -1.64971679e-01 -5.48376180e-02 2.91934490e-01\n -5.00012189e-02 -3.33776511e-02 -1.01947427e+00 -5.86373985e-01\n -2.68422246e-01 3.63008380e-02 -1.25679085e-02 -9.54157952e-03\n -5.00184251e-04 1.35437716e-02 -3.63137270e-03 2.12676078e-02\n -5.51133708e-04 -7.33536435e-03 -1.58551766e-03]\n [ 4.97718692e-01 -1.64971679e-01 -5.48376180e-02 2.91934490e-01\n -5.00012189e-02 -3.33776511e-02 -1.01947427e+00 -1.49434829e+00\n -1.30975068e+00 3.63008380e-02 -1.25679085e-02 -9.54157952e-03\n -5.00184251e-04 1.35437716e-02 -3.63137270e-03 2.12676078e-02\n -5.51133708e-04 -7.33536435e-03 -1.58551766e-03]\n [ 4.97718692e-01 -1.64971679e-01 -5.48376180e-02 2.91934490e-01\n -5.00012189e-02 -3.33776511e-02 -1.01947427e+00 1.35149419e+00\n 1.62303102e+00 3.63008380e-02 -1.25679085e-02 -9.54157952e-03\n -5.00184251e-04 1.35437716e-02 -3.63137270e-03 2.12676078e-02\n -5.51133708e-04 -7.33536435e-03 -1.58551766e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAF7TsvewlD74K16M8F0hZvZf2wLwK16M8iC4KvsEP8b0K16M8bVP5PXj/Fj4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/4QavPIy6z1gVxE+BBVqPZ3sxz2pNYw9h5AWPosxqz3pwj8+KbYFvkUkE77Wp+E9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAF7TsvewlD74K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAABdIWb2X9sC8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACILgq+wQ/xvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAbVP5PXj/Fj4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.11557787 -0.1397931 0.02 ]\n [-0.05304727 -0.02355508 0.02 ]\n [-0.13494313 -0.11770583 0.02 ]\n [ 0.12174115 0.14745891 0.02 ]]", "desired_goal": "[[-0.00943112 0.11484326 0.14193487]\n [ 0.05714895 0.09761927 0.06846172]\n [ 0.1470357 0.08359059 0.18726696]\n [-0.1305777 -0.14369304 0.1101834 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1557787e-01\n -1.3979310e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.3047266e-02\n -2.3555083e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.3494313e-01\n -1.1770583e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.2174115e-01\n 1.4745891e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 4000, "use_sde": true, "sde_sample_freq": 8, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXW+bqRBfEsCUhpRSlIwBbJRLMowBdJRHQIQ1wVsUIs11fZQoaAZoCWgPQwifru5YbAskwJSGlFKUaBVLMmgWR0CENVIq9XcQdX2UKGgGaAloD0MIFEGchxOgJcCUhpRSlGgVSzJoFkdAhDTh2fTTfHV9lChoBmgJaA9DCMwNhjqsQCTAlIaUUpRoFUsyaBZHQIQ0byz5XU91fZQoaAZoCWgPQwgf+BisOM0owJSGlFKUaBVLMmgWR0CEOulzltCRdX2UKGgGaAloD0MIKO/jaI48KcCUhpRSlGgVSzJoFkdAhDp4qPOpsHV9lChoBmgJaA9DCI1HqYQnFBbAlIaUUpRoFUsyaBZHQIQ6BqIrOJN1fZQoaAZoCWgPQwjmeXB31gYjwJSGlFKUaBVLMmgWR0CEOZQ0GeMAdX2UKGgGaAloD0MIQIhkyLFdIMCUhpRSlGgVSzJoFkdAhEBClBQem3V9lChoBmgJaA9DCOYivhOzHhjAlIaUUpRoFUsyaBZHQIQ/0gU1yeZ1fZQoaAZoCWgPQwiyZI7lXXXxv5SGlFKUaBVLMmgWR0CEP2AbQ1JldX2UKGgGaAloD0MIXFmis8wKK8CUhpRSlGgVSzJoFkdAhD7tnoPkJnV9lChoBmgJaA9DCIC3QILiNyDAlIaUUpRoFUsyaBZHQIRF8ma6ST11fZQoaAZoCWgPQwhEMXkDzAQwwJSGlFKUaBVLMmgWR0CERYHVwxWUdX2UKGgGaAloD0MI6DI1Cd7gJcCUhpRSlGgVSzJoFkdAhEUP8AJb+3V9lChoBmgJaA9DCED8/Pfg3SXAlIaUUpRoFUsyaBZHQIREnK4hEBt1fZQoaAZoCWgPQwgPYmcKndcfwJSGlFKUaBVLMmgWR0CES2w22oegdX2UKGgGaAloD0MIyGEwf4X8I8CUhpRSlGgVSzJoFkdAhEr8feUILXV9lChoBmgJaA9DCAtjC0EOihHAlIaUUpRoFUsyaBZHQIRKirPt2LZ1fZQoaAZoCWgPQwgL0SFwJLggwJSGlFKUaBVLMmgWR0CEShfb9If9dX2UKGgGaAloD0MI6SrdXWfTF8CUhpRSlGgVSzJoFkdAhFD7UXpGF3V9lChoBmgJaA9DCK62Yn/ZdSTAlIaUUpRoFUsyaBZHQIRQirLhaTx1fZQoaAZoCWgPQwg8F0Z6URsOwJSGlFKUaBVLMmgWR0CEUBizcAR1dX2UKGgGaAloD0MIodrgRPT7H8CUhpRSlGgVSzJoFkdAhE+mNipeeHV9lChoBmgJaA9DCD7shQK2oyPAlIaUUpRoFUsyaBZHQIRWV5+pfhN1fZQoaAZoCWgPQwgEBHP0+H0fwJSGlFKUaBVLMmgWR0CEVeahHskZdX2UKGgGaAloD0MI4gFlU67QJcCUhpRSlGgVSzJoFkdAhFV0LDye7XV9lChoBmgJaA9DCOYCl8eaOSXAlIaUUpRoFUsyaBZHQIRVAXoC+111fZQoaAZoCWgPQwhSZK2h1KYuwJSGlFKUaBVLMmgWR0CEW9LkjopydX2UKGgGaAloD0MIhNTt7CvfHsCUhpRSlGgVSzJoFkdAhFthppN9IHV9lChoBmgJaA9DCHSZmgRvmBTAlIaUUpRoFUsyaBZHQIRa70lJHy51fZQoaAZoCWgPQwjhl/p5UyEmwJSGlFKUaBVLMmgWR0CEWny/9Hc2dX2UKGgGaAloD0MIf2q8dJMwJ8CUhpRSlGgVSzJoFkdAhGE2M85jpnV9lChoBmgJaA9DCJ1oVyHlLyrAlIaUUpRoFUsyaBZHQIRgxUBGQS11fZQoaAZoCWgPQwh6bwwBwCkkwJSGlFKUaBVLMmgWR0CEYFNfw7T2dX2UKGgGaAloD0MIYqBrX0CHJsCUhpRSlGgVSzJoFkdAhF/hIFvAGnV9lChoBmgJaA9DCNFbPLznQCfAlIaUUpRoFUsyaBZHQIRmpkZrHlx1fZQoaAZoCWgPQwgzi1BsBc3tv5SGlFKUaBVLMmgWR0CEZjU5uIhydX2UKGgGaAloD0MIN/5EZcPKHsCUhpRSlGgVSzJoFkdAhGXDQRf4RHV9lChoBmgJaA9DCAx3Loz0oijAlIaUUpRoFUsyaBZHQIRlUAvL5h11fZQoaAZoCWgPQwh8mpMXmXAwwJSGlFKUaBVLMmgWR0CEbHuiN83NdX2UKGgGaAloD0MI48EWu30mFsCUhpRSlGgVSzJoFkdAhGwMlLOAy3V9lChoBmgJaA9DCP2jb9I0SCPAlIaUUpRoFUsyaBZHQIRrmpIczZZ1fZQoaAZoCWgPQwhvoMA7+VQwwJSGlFKUaBVLMmgWR0CEayeAd4mkdX2UKGgGaAloD0MIlKMAUTCzMcCUhpRSlGgVSzJoFkdAhHG6dc0Lt3V9lChoBmgJaA9DCOQViJ6UORbAlIaUUpRoFUsyaBZHQIRxSfcvduZ1fZQoaAZoCWgPQwhB740hAFgKwJSGlFKUaBVLMmgWR0CEcNjOLR8ddX2UKGgGaAloD0MIzc03onv+LMCUhpRSlGgVSzJoFkdAhHBmA9V3lnV9lChoBmgJaA9DCPIiE/BrrCHAlIaUUpRoFUsyaBZHQIR3iuGKyfN1fZQoaAZoCWgPQwglA0AVN3YlwJSGlFKUaBVLMmgWR0CEdxopx3mndX2UKGgGaAloD0MIVYUGYtmsI8CUhpRSlGgVSzJoFkdAhHapc5bQkXV9lChoBmgJaA9DCIP8bOS6oSXAlIaUUpRoFUsyaBZHQIR2Nt/FzdV1fZQoaAZoCWgPQwiwq8lTVkMUwJSGlFKUaBVLMmgWR0CEfQIRh+fAdX2UKGgGaAloD0MIQrKACdxiKMCUhpRSlGgVSzJoFkdAhHyRVhkRSXV9lChoBmgJaA9DCJLn+j4cJB7AlIaUUpRoFUsyaBZHQIR8HyqdYnx1fZQoaAZoCWgPQwg+JefEHpoYwJSGlFKUaBVLMmgWR0CEe6wRoRI0dX2UKGgGaAloD0MIr30BvXBnHMCUhpRSlGgVSzJoFkdAhIJuJLuhK3V9lChoBmgJaA9DCEC9GTVfVSDAlIaUUpRoFUsyaBZHQISB/QY1pCd1fZQoaAZoCWgPQwjHEWvxKcADwJSGlFKUaBVLMmgWR0CEgYrbQC0XdX2UKGgGaAloD0MIwmosYW0sBsCUhpRSlGgVSzJoFkdAhIEYYrJ8v3V9lChoBmgJaA9DCNYCe0ykVAzAlIaUUpRoFUsyaBZHQISIW67NB4V1fZQoaAZoCWgPQwhXlugsszglwJSGlFKUaBVLMmgWR0CEh+rVe8f3dX2UKGgGaAloD0MIYjB/hcwFE8CUhpRSlGgVSzJoFkdAhId48dPtUnV9lChoBmgJaA9DCH12wHXFRCjAlIaUUpRoFUsyaBZHQISHB/CqIad1fZQoaAZoCWgPQwi2LjVCP7MawJSGlFKUaBVLMmgWR0CEjaCqZML4dX2UKGgGaAloD0MIb7vQXKcBI8CUhpRSlGgVSzJoFkdAhI0vUBnzx3V9lChoBmgJaA9DCGXjwRa7pSbAlIaUUpRoFUsyaBZHQISMvW1+iJx1fZQoaAZoCWgPQwjEW+ffLnsbwJSGlFKUaBVLMmgWR0CEjEqBEroXdX2UKGgGaAloD0MI61T5npGIKMCUhpRSlGgVSzJoFkdAhJNIRRMviHV9lChoBmgJaA9DCFa5UPnXohTAlIaUUpRoFUsyaBZHQISS2aBqbjN1fZQoaAZoCWgPQwiSCI1g45ocwJSGlFKUaBVLMmgWR0CEkmeV9nbqdX2UKGgGaAloD0MISbvRx3xwFMCUhpRSlGgVSzJoFkdAhJH07Sy+pXV9lChoBmgJaA9DCEvmWN5VDynAlIaUUpRoFUsyaBZHQISYqEg4ffZ1fZQoaAZoCWgPQwhdNGQ8Sj0uwJSGlFKUaBVLMmgWR0CEmDbu+h4/dX2UKGgGaAloD0MInBTmPc4sKMCUhpRSlGgVSzJoFkdAhJfE8q4H5nV9lChoBmgJaA9DCNqs+lxtZQLAlIaUUpRoFUsyaBZHQISXUyvcJt11fZQoaAZoCWgPQwhn0xHAzZIXwJSGlFKUaBVLMmgWR0CEnfF5OafBdX2UKGgGaAloD0MItixfl+GvKMCUhpRSlGgVSzJoFkdAhJ2ALJCBw3V9lChoBmgJaA9DCFpiZTTyyRHAlIaUUpRoFUsyaBZHQISdDjvNNah1fZQoaAZoCWgPQwgPuK6YEa4owJSGlFKUaBVLMmgWR0CEnJvrGBFvdX2UKGgGaAloD0MI8nowKT7+8b+UhpRSlGgVSzJoFkdAhKN/OdGy5nV9lChoBmgJaA9DCKQ4Rx0dbyTAlIaUUpRoFUsyaBZHQISjDmlqJuV1fZQoaAZoCWgPQwhMqrab4EslwJSGlFKUaBVLMmgWR0CEop6/qPfbdX2UKGgGaAloD0MIychZ2NN+JsCUhpRSlGgVSzJoFkdAhKIsaCL/CXV9lChoBmgJaA9DCJTA5hw88yLAlIaUUpRoFUsyaBZHQISoyNsFdLR1fZQoaAZoCWgPQwgAVdy4xYwawJSGlFKUaBVLMmgWR0CEqFg9/z8QdX2UKGgGaAloD0MIdoh/2NLjHcCUhpRSlGgVSzJoFkdAhKfmXw9aEHV9lChoBmgJaA9DCBmRKLSsexnAlIaUUpRoFUsyaBZHQISnc8Tzund1fZQoaAZoCWgPQwjYt5OI8C8RwJSGlFKUaBVLMmgWR0CErlk/8l5XdX2UKGgGaAloD0MIuI/cmnRLKcCUhpRSlGgVSzJoFkdAhK3pYs/Y8XV9lChoBmgJaA9DCKmieJW1rS7AlIaUUpRoFUsyaBZHQISteZ5Rjz91fZQoaAZoCWgPQwisjEY+rzjwv5SGlFKUaBVLMmgWR0CErQcwxnFpdX2UKGgGaAloD0MIbXL4pBOBI8CUhpRSlGgVSzJoFkdAhLPb3Gn4wnV9lChoBmgJaA9DCGIvFLAdTBLAlIaUUpRoFUsyaBZHQISzatV7x/d1fZQoaAZoCWgPQwh0toDQejgPwJSGlFKUaBVLMmgWR0CEsvkpZwGXdX2UKGgGaAloD0MIu+8YHvvpK8CUhpRSlGgVSzJoFkdAhLKGAbyYonV9lChoBmgJaA9DCJT6srRTVzHAlIaUUpRoFUsyaBZHQIS5IVj7Q9l1fZQoaAZoCWgPQwjQY5RnXkYmwJSGlFKUaBVLMmgWR0CEuLAt4A0bdX2UKGgGaAloD0MI5dL4hVeCM8CUhpRSlGgVSzJoFkdAhLg+e4Cp33V9lChoBmgJaA9DCL06x4DsnSfAlIaUUpRoFUsyaBZHQIS3y9ytFKF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiKYwBQ5R0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAA8D+UaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUaAcolggAAAAAAAAAAAAAAAAAAACUaA4paBF0lFKUZS4="}, "_n_updates": 47500, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 10000, "tau": 0.005, "gamma": 0.95, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7f3deb519430>", "add": "<function DictReplayBuffer.add at 0x7f3deb5194c0>", "sample": "<function DictReplayBuffer.sample at 0x7f3deb519550>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7f3deb5195e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3deb51c380>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": {":type:": "<class 'numpy.float32'>", ":serialized:": "gAWVZQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEAACAwJSGlFKULg=="}, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.15.0-60-generic-x86_64-with-glibc2.35 # 66-Ubuntu SMP Fri Jan 20 14:29:49 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -9.597975699976086, "std_reward": 3.1557037667789385, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-17T17:33:28.269400"}
 
1
+ {"mean_reward": -8.83792223520577, "std_reward": 3.1109936271684266, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-17T18:08:48.042379"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:98b6f56661b57b6ac1b8f16130cf4e5a1b8534474cb0ca451eeadedf1803688c
3
- size 1968
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:224c300214d68e9439fe589682a44a40be84670d07736c00665b44eabe901d75
3
+ size 3579