bobobert4 commited on
Commit
a3d9e4a
1 Parent(s): 99f3b77

1M learn steps

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: MlpPolicy
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 270.60 +/- 36.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **MlpPolicy** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2f632b2e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2f632b370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2f632b400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2f632b490>", "_build": "<function ActorCriticPolicy._build at 0x7fa2f632b520>", "forward": "<function ActorCriticPolicy.forward at 0x7fa2f632b5b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa2f632b640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2f632b6d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa2f632b760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2f632b7f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2f632b880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2f632b910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa2f6322ec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688431577366869205, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADlqD0Kr48/O6GOPj/aCb/4zC8+qgu5PQAAAAAAAAAAjdRKvu4uorw4IBo7Ps1tOe8jDj7PUEW6AACAPwAAgD8zgv28vTSoP+Uw2b5LxzG//lKpOldYjb0AAAAAAAAAANrMwr1q0jE+k2MUPvspWL6H1Tk9B2uSPQAAAAAAAAAAGoz0vQoGFLs+Lh+9MEaQuAxkijzCUfg8AACAPwAAAABmFpC8j9IzOfqMPjxvo1i+38qvvMc7Q70AAAAAAAAAALqYdz6NMlU/xmXIPn1O574/qYg+uo/yPQAAAAAAAAAA3XpovunZBLzqRZy6q21RuEvjiz3LSr45AACAPwAAgD/g/BA+yB2EO5pYdL4y9Wy8Z80TPrr7IL4AAIA/AACAP6J0oL69Ehk/Msy6vdJw4r52bS2+CqyePQAAAAAAAAAA0y8wvshAkLzau5W5QtUduHoLCj5+tdU4AACAPwAAgD9NJTA9H1WfuYujczaL8Qgy35pqO/a+lbUAAIA/AACAP/ouIr722HK8PHQvO9TweTkeZN49pu1vugAAgD8AAIA/wGO4vm2c5T5Y+/g9IBHDvvuWG73k+Zk9AAAAAAAAAADzW2M+bO+oPLDfWb7upoK+b4wQvewXwToAAAAAAAAAAMZzQD4UhMK8+sSLutwPFTnnsC++IDzCOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCHyncclw+MAWyUS9qMAXSUR0CgPDDqGDcudX2UKGgGR0Bwek4cWCVbaAdL7mgIR0CgPEwSJ0nxdX2UKGgGR0Bwe+0F8ohIaAdL2GgIR0CgPIP3i704dX2UKGgGR0BwW6Haews5aAdL+GgIR0CgPN0jC53DdX2UKGgGR0BxkflRxcVyaAdNAAFoCEdAoD2GzKLbYnV9lChoBkdAcgohwVCXyGgHS9FoCEdAoD2MGcFyJnV9lChoBkdAbnhdxAB1cWgHS9doCEdAoD5urIYFaHV9lChoBkdAcD1D5j6N2mgHS+1oCEdAoD5/LRrrPnV9lChoBkdAccG1CPZIx2gHTVoBaAhHQKA+q04R28t1fZQoaAZHQHJau76Hj6xoB0vKaAhHQKBALYV6/qR1fZQoaAZHQHHPINRWLgpoB0vHaAhHQKBAa6PKdQR1fZQoaAZHQHC1hplBhQZoB0vBaAhHQKBAs4wyqMp1fZQoaAZHQHB7+CPIXCVoB01aAmgIR0CgQNUNz8xcdX2UKGgGR0ByC6KrJbMYaAdL22gIR0CgQTURnOB2dX2UKGgGR0BuLkEHMUypaAdL72gIR0CgQfStNi6QdX2UKGgGR0Bwtv2pQ1rJaAdL1mgIR0CgQf6yjYZmdX2UKGgGR0BxpK44Ia99aAdLzWgIR0CgQoV0knkUdX2UKGgGR0Bwnxm8M/hVaAdLy2gIR0CgQp62fChwdX2UKGgGR0BxzMRGtp22aAdL3GgIR0CgQr9u5z5odX2UKGgGR0BsM9nVXmvGaAdLzmgIR0CgRAaAvtdBdX2UKGgGR0Bxaru2JBPbaAdL3mgIR0CgRBearmyPdX2UKGgGR0Bw3l4Pf8/EaAdLxmgIR0CgRFHpjc2zdX2UKGgGR0BvUNvIfbKzaAdL4mgIR0CgRUwZflZHdX2UKGgGR0Bw0j889wFUaAdLyWgIR0CgRbCy6cy4dX2UKGgGR0Bv9mHP/rB1aAdNIAFoCEdAoEXszj3mFXV9lChoBkdAbgtjo6jnFGgHS9toCEdAoEYCi7Ciy3V9lChoBkdAccaGlQ/HHWgHS8xoCEdAoEZQuIyj6HV9lChoBkdAcgkmXgLqlmgHS8xoCEdAoEZrS/j81nV9lChoBkdAb51thNM4+GgHS9hoCEdAoEbF1fVqe3V9lChoBkdAYriBKcurZWgHTegDaAhHQKBG3bqyGBZ1fZQoaAZHQHMmxeC04R5oB0vdaAhHQKBIKd07r9l1fZQoaAZHQHKiqQq7ROVoB0vYaAhHQKBISS9ugpV1fZQoaAZHQHEhYd2gWadoB0vvaAhHQKBIcXkYGdJ1fZQoaAZHQG/GulfqoqFoB0vLaAhHQKBI8SgXdj51fZQoaAZHQG7Qn/LkjopoB0vSaAhHQKBJtUWEbo91fZQoaAZHQGRbklNUOutoB03oA2gIR0CgSbN8NQTFdX2UKGgGR0BxH+e7L+xXaAdLxWgIR0CgScOymhugdX2UKGgGR0Bw0lhx5s0paAdL72gIR0CgShs495hSdX2UKGgGR0BveD+vQnhLaAdLw2gIR0CgSjZeqrBCdX2UKGgGR0BwaRIatLcsaAdLzGgIR0CgSkYIjW07dX2UKGgGR0BxjOP+4smOaAdNBAFoCEdAoEpEELYwqXV9lChoBkdAb/bKA8Swn2gHS+hoCEdAoEppwfhddHV9lChoBkdAcUNcB2fTTmgHS8NoCEdAoEub6ab4J3V9lChoBkdAcOZ2fChvi2gHS9hoCEdAoEu2WD6Fd3V9lChoBkdAcTApQ1rIo2gHS8NoCEdAoEwcWl/H53V9lChoBkdAXSNB1LamGmgHTegDaAhHQKBMcCZnctZ1fZQoaAZHQHB1eMQ2/BZoB0vKaAhHQKBM64//vOR1fZQoaAZHQHEVlG9YfXBoB0u+aAhHQKBNQmQbMot1fZQoaAZHQG6mDCpFTehoB0u6aAhHQKBNWVBUrCp1fZQoaAZHQHHWua8YhuBoB0vMaAhHQKBNVS3LFGZ1fZQoaAZHQHHyPci4axZoB0vpaAhHQKBNcvA44qB1fZQoaAZHQHIAJK3/gixoB0vwaAhHQKBNfzshPj51fZQoaAZHQGQBa2nbZe1oB03oA2gIR0CgTbYB/7SBdX2UKGgGR0Bua74nF5v+aAdLwWgIR0CgTpHJ9y93dX2UKGgGR0BlNMfozN2UaAdN6ANoCEdAoE6bynUDuHV9lChoBkdAbz/M+u/1x2gHS8VoCEdAoE63cYZVGXV9lChoBkdAYj9GoaUA1mgHTegDaAhHQKBPL2Rq46R1fZQoaAZHQHDgVgQYk3VoB0vvaAhHQKBP5nZCfHx1fZQoaAZHQHBQfmHP/rBoB00FAWgIR0CgT/THS4OMdX2UKGgGR0BxTXZM+NcXaAdLvWgIR0CgUCIWP91mdX2UKGgGR0BydALJCBwuaAdL3GgIR0CgUKubRWtEdX2UKGgGR0ByLW1Bt1p1aAdL62gIR0CgUMH0se4kdX2UKGgGR0Bv0MdHUc4paAdL22gIR0CgUOcafjCIdX2UKGgGR0BxdM2qDK5kaAdNEgFoCEdAoFDvDWK/EnV9lChoBkdAcWiMwlByCGgHTUwBaAhHQKBSIa6STyJ1fZQoaAZHQHH0yde6ZploB0voaAhHQKBSJlbNbC91fZQoaAZHQHCasw1zhgpoB0vLaAhHQKBSOXF98Z11fZQoaAZHQHJ0cGorFwVoB008AmgIR0CgUvJjUd7wdX2UKGgGR0BwHJERaouPaAdL0GgIR0CgUxm51/2CdX2UKGgGR0BvtoMfA9FGaAdL12gIR0CgU3KX4TK1dX2UKGgGR0BvrnIGQjlgaAdL9GgIR0CgU7MeOn2qdX2UKGgGR0ByBKXSjQAuaAdNcQFoCEdAoFRFiz9jw3V9lChoBkdAchXc9W6shmgHS/FoCEdAoFSyxqwhXHV9lChoBkdAboXuEVWS2mgHS9doCEdAoFYyemNzbXV9lChoBkdAcRM5GSZBs2gHTToBaAhHQKBWRLsa86F1fZQoaAZHQHCuEPlMh5hoB0vYaAhHQKBWW8KXv6V1fZQoaAZHQG6bgNPP9k1oB0vIaAhHQKBXCm51/2F1fZQoaAZHQHKTQydnTRZoB0vSaAhHQKBYIAiml691fZQoaAZHQG1mv2PDHfdoB0u9aAhHQKBY1JdSl311fZQoaAZHQHKkktdzGPxoB0vkaAhHQKBZFMB6rvN1fZQoaAZHQGIZ9Y4hllNoB03oA2gIR0CgWgSNXHR1dX2UKGgGR0BwVGDtgKF7aAdL5GgIR0CgWmUCq6vrdX2UKGgGR0BwGyCnP3SKaAdLx2gIR0CgW1ZLh73PdX2UKGgGR0BxWl3HJcPfaAdL0GgIR0CgW6LtNSIhdX2UKGgGR0BxZyOBDohZaAdL0WgIR0CgW8AdOqNqdX2UKGgGR0BvEinvUjLTaAdLzWgIR0CgXGQR5C4SdX2UKGgGR0BeIXu/k/8maAdN6ANoCEdAoFzlsvZh8nV9lChoBkdAb0QTOgQHzGgHS9loCEdAoF2Hkkrwv3V9lChoBkdAbpnpX6qKg2gHS8RoCEdAoF6VAiV0LnV9lChoBkdAcFfXlbNbDGgHTUQCaAhHQKBet/echDB1fZQoaAZHQG8b4zi0fHRoB00DAWgIR0CgXteIMz/IdX2UKGgGR0BxHVxJd0JXaAdL7mgIR0CgXxDUmUnpdX2UKGgGR0Bx+EOH31zyaAdL0mgIR0CgX3HfMwDedX2UKGgGR0Bu4V8XvYvnaAdL1mgIR0CgX7K/ub7TdX2UKGgGR0Bx1SjpLVWkaAdL72gIR0CgYDaVdHDrdX2UKGgGR0Bk6+VmjCYUaAdN6ANoCEdAoGBDNB4UvnV9lChoBkdAbjwZ9d/rjmgHS+JoCEdAoGDB0wJw9HV9lChoBkdAb+JOWSlnAmgHS+loCEdAoGGCVObiInV9lChoBkdAYxmPI4lyBGgHTegDaAhHQKBhxUzbeuV1fZQoaAZHQHErH5eqrBFoB0vMaAhHQKBiE/fO2Rd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
lunar_landing_ppo_030723_01.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe6ceb8cf57da53b9032d9ca5d0593d4167c259b0e61394b6d17f97498f2f1d1
3
+ size 146654
lunar_landing_ppo_030723_01/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
lunar_landing_ppo_030723_01/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2f632b2e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2f632b370>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2f632b400>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2f632b490>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa2f632b520>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa2f632b5b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa2f632b640>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2f632b6d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa2f632b760>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2f632b7f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2f632b880>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2f632b910>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fa2f6322ec0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1688431577366869205,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADlqD0Kr48/O6GOPj/aCb/4zC8+qgu5PQAAAAAAAAAAjdRKvu4uorw4IBo7Ps1tOe8jDj7PUEW6AACAPwAAgD8zgv28vTSoP+Uw2b5LxzG//lKpOldYjb0AAAAAAAAAANrMwr1q0jE+k2MUPvspWL6H1Tk9B2uSPQAAAAAAAAAAGoz0vQoGFLs+Lh+9MEaQuAxkijzCUfg8AACAPwAAAABmFpC8j9IzOfqMPjxvo1i+38qvvMc7Q70AAAAAAAAAALqYdz6NMlU/xmXIPn1O574/qYg+uo/yPQAAAAAAAAAA3XpovunZBLzqRZy6q21RuEvjiz3LSr45AACAPwAAgD/g/BA+yB2EO5pYdL4y9Wy8Z80TPrr7IL4AAIA/AACAP6J0oL69Ehk/Msy6vdJw4r52bS2+CqyePQAAAAAAAAAA0y8wvshAkLzau5W5QtUduHoLCj5+tdU4AACAPwAAgD9NJTA9H1WfuYujczaL8Qgy35pqO/a+lbUAAIA/AACAP/ouIr722HK8PHQvO9TweTkeZN49pu1vugAAgD8AAIA/wGO4vm2c5T5Y+/g9IBHDvvuWG73k+Zk9AAAAAAAAAADzW2M+bO+oPLDfWb7upoK+b4wQvewXwToAAAAAAAAAAMZzQD4UhMK8+sSLutwPFTnnsC++IDzCOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV9wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCHyncclw+MAWyUS9qMAXSUR0CgPDDqGDcudX2UKGgGR0Bwek4cWCVbaAdL7mgIR0CgPEwSJ0nxdX2UKGgGR0Bwe+0F8ohIaAdL2GgIR0CgPIP3i704dX2UKGgGR0BwW6Haews5aAdL+GgIR0CgPN0jC53DdX2UKGgGR0BxkflRxcVyaAdNAAFoCEdAoD2GzKLbYnV9lChoBkdAcgohwVCXyGgHS9FoCEdAoD2MGcFyJnV9lChoBkdAbnhdxAB1cWgHS9doCEdAoD5urIYFaHV9lChoBkdAcD1D5j6N2mgHS+1oCEdAoD5/LRrrPnV9lChoBkdAccG1CPZIx2gHTVoBaAhHQKA+q04R28t1fZQoaAZHQHJau76Hj6xoB0vKaAhHQKBALYV6/qR1fZQoaAZHQHHPINRWLgpoB0vHaAhHQKBAa6PKdQR1fZQoaAZHQHC1hplBhQZoB0vBaAhHQKBAs4wyqMp1fZQoaAZHQHB7+CPIXCVoB01aAmgIR0CgQNUNz8xcdX2UKGgGR0ByC6KrJbMYaAdL22gIR0CgQTURnOB2dX2UKGgGR0BuLkEHMUypaAdL72gIR0CgQfStNi6QdX2UKGgGR0Bwtv2pQ1rJaAdL1mgIR0CgQf6yjYZmdX2UKGgGR0BxpK44Ia99aAdLzWgIR0CgQoV0knkUdX2UKGgGR0Bwnxm8M/hVaAdLy2gIR0CgQp62fChwdX2UKGgGR0BxzMRGtp22aAdL3GgIR0CgQr9u5z5odX2UKGgGR0BsM9nVXmvGaAdLzmgIR0CgRAaAvtdBdX2UKGgGR0Bxaru2JBPbaAdL3mgIR0CgRBearmyPdX2UKGgGR0Bw3l4Pf8/EaAdLxmgIR0CgRFHpjc2zdX2UKGgGR0BvUNvIfbKzaAdL4mgIR0CgRUwZflZHdX2UKGgGR0Bw0j889wFUaAdLyWgIR0CgRbCy6cy4dX2UKGgGR0Bv9mHP/rB1aAdNIAFoCEdAoEXszj3mFXV9lChoBkdAbgtjo6jnFGgHS9toCEdAoEYCi7Ciy3V9lChoBkdAccaGlQ/HHWgHS8xoCEdAoEZQuIyj6HV9lChoBkdAcgkmXgLqlmgHS8xoCEdAoEZrS/j81nV9lChoBkdAb51thNM4+GgHS9hoCEdAoEbF1fVqe3V9lChoBkdAYriBKcurZWgHTegDaAhHQKBG3bqyGBZ1fZQoaAZHQHMmxeC04R5oB0vdaAhHQKBIKd07r9l1fZQoaAZHQHKiqQq7ROVoB0vYaAhHQKBISS9ugpV1fZQoaAZHQHEhYd2gWadoB0vvaAhHQKBIcXkYGdJ1fZQoaAZHQG/GulfqoqFoB0vLaAhHQKBI8SgXdj51fZQoaAZHQG7Qn/LkjopoB0vSaAhHQKBJtUWEbo91fZQoaAZHQGRbklNUOutoB03oA2gIR0CgSbN8NQTFdX2UKGgGR0BxH+e7L+xXaAdLxWgIR0CgScOymhugdX2UKGgGR0Bw0lhx5s0paAdL72gIR0CgShs495hSdX2UKGgGR0BveD+vQnhLaAdLw2gIR0CgSjZeqrBCdX2UKGgGR0BwaRIatLcsaAdLzGgIR0CgSkYIjW07dX2UKGgGR0BxjOP+4smOaAdNBAFoCEdAoEpEELYwqXV9lChoBkdAb/bKA8Swn2gHS+hoCEdAoEppwfhddHV9lChoBkdAcUNcB2fTTmgHS8NoCEdAoEub6ab4J3V9lChoBkdAcOZ2fChvi2gHS9hoCEdAoEu2WD6Fd3V9lChoBkdAcTApQ1rIo2gHS8NoCEdAoEwcWl/H53V9lChoBkdAXSNB1LamGmgHTegDaAhHQKBMcCZnctZ1fZQoaAZHQHB1eMQ2/BZoB0vKaAhHQKBM64//vOR1fZQoaAZHQHEVlG9YfXBoB0u+aAhHQKBNQmQbMot1fZQoaAZHQG6mDCpFTehoB0u6aAhHQKBNWVBUrCp1fZQoaAZHQHHWua8YhuBoB0vMaAhHQKBNVS3LFGZ1fZQoaAZHQHHyPci4axZoB0vpaAhHQKBNcvA44qB1fZQoaAZHQHIAJK3/gixoB0vwaAhHQKBNfzshPj51fZQoaAZHQGQBa2nbZe1oB03oA2gIR0CgTbYB/7SBdX2UKGgGR0Bua74nF5v+aAdLwWgIR0CgTpHJ9y93dX2UKGgGR0BlNMfozN2UaAdN6ANoCEdAoE6bynUDuHV9lChoBkdAbz/M+u/1x2gHS8VoCEdAoE63cYZVGXV9lChoBkdAYj9GoaUA1mgHTegDaAhHQKBPL2Rq46R1fZQoaAZHQHDgVgQYk3VoB0vvaAhHQKBP5nZCfHx1fZQoaAZHQHBQfmHP/rBoB00FAWgIR0CgT/THS4OMdX2UKGgGR0BxTXZM+NcXaAdLvWgIR0CgUCIWP91mdX2UKGgGR0BydALJCBwuaAdL3GgIR0CgUKubRWtEdX2UKGgGR0ByLW1Bt1p1aAdL62gIR0CgUMH0se4kdX2UKGgGR0Bv0MdHUc4paAdL22gIR0CgUOcafjCIdX2UKGgGR0BxdM2qDK5kaAdNEgFoCEdAoFDvDWK/EnV9lChoBkdAcWiMwlByCGgHTUwBaAhHQKBSIa6STyJ1fZQoaAZHQHH0yde6ZploB0voaAhHQKBSJlbNbC91fZQoaAZHQHCasw1zhgpoB0vLaAhHQKBSOXF98Z11fZQoaAZHQHJ0cGorFwVoB008AmgIR0CgUvJjUd7wdX2UKGgGR0BwHJERaouPaAdL0GgIR0CgUxm51/2CdX2UKGgGR0BvtoMfA9FGaAdL12gIR0CgU3KX4TK1dX2UKGgGR0BvrnIGQjlgaAdL9GgIR0CgU7MeOn2qdX2UKGgGR0ByBKXSjQAuaAdNcQFoCEdAoFRFiz9jw3V9lChoBkdAchXc9W6shmgHS/FoCEdAoFSyxqwhXHV9lChoBkdAboXuEVWS2mgHS9doCEdAoFYyemNzbXV9lChoBkdAcRM5GSZBs2gHTToBaAhHQKBWRLsa86F1fZQoaAZHQHCuEPlMh5hoB0vYaAhHQKBWW8KXv6V1fZQoaAZHQG6bgNPP9k1oB0vIaAhHQKBXCm51/2F1fZQoaAZHQHKTQydnTRZoB0vSaAhHQKBYIAiml691fZQoaAZHQG1mv2PDHfdoB0u9aAhHQKBY1JdSl311fZQoaAZHQHKkktdzGPxoB0vkaAhHQKBZFMB6rvN1fZQoaAZHQGIZ9Y4hllNoB03oA2gIR0CgWgSNXHR1dX2UKGgGR0BwVGDtgKF7aAdL5GgIR0CgWmUCq6vrdX2UKGgGR0BwGyCnP3SKaAdLx2gIR0CgW1ZLh73PdX2UKGgGR0BxWl3HJcPfaAdL0GgIR0CgW6LtNSIhdX2UKGgGR0BxZyOBDohZaAdL0WgIR0CgW8AdOqNqdX2UKGgGR0BvEinvUjLTaAdLzWgIR0CgXGQR5C4SdX2UKGgGR0BeIXu/k/8maAdN6ANoCEdAoFzlsvZh8nV9lChoBkdAb0QTOgQHzGgHS9loCEdAoF2Hkkrwv3V9lChoBkdAbpnpX6qKg2gHS8RoCEdAoF6VAiV0LnV9lChoBkdAcFfXlbNbDGgHTUQCaAhHQKBet/echDB1fZQoaAZHQG8b4zi0fHRoB00DAWgIR0CgXteIMz/IdX2UKGgGR0BxHVxJd0JXaAdL7mgIR0CgXxDUmUnpdX2UKGgGR0Bx+EOH31zyaAdL0mgIR0CgX3HfMwDedX2UKGgGR0Bu4V8XvYvnaAdL1mgIR0CgX7K/ub7TdX2UKGgGR0Bx1SjpLVWkaAdL72gIR0CgYDaVdHDrdX2UKGgGR0Bk6+VmjCYUaAdN6ANoCEdAoGBDNB4UvnV9lChoBkdAbjwZ9d/rjmgHS+JoCEdAoGDB0wJw9HV9lChoBkdAb+JOWSlnAmgHS+loCEdAoGGCVObiInV9lChoBkdAYxmPI4lyBGgHTegDaAhHQKBhxUzbeuV1fZQoaAZHQHErH5eqrBFoB0vMaAhHQKBiE/fO2Rd1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 320,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
lunar_landing_ppo_030723_01/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c09db2d2d0bce432355e862235c3699295ef4ebae57b43d4066b557d578f2a6b
3
+ size 87929
lunar_landing_ppo_030723_01/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6bb010d3deaee2a3cb3ea05c80de6e48d3151c6fd67bb29dd219b5014b5ac16
3
+ size 43329
lunar_landing_ppo_030723_01/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_landing_ppo_030723_01/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (143 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 270.5976809, "std_reward": 36.49383946873192, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-04T01:13:53.120093"}