bobobert4 commited on
Commit
e774416
1 Parent(s): ab1fce9

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.06 +/- 1.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc0ab6f1cff8511287cacc3d977e27737d36234787f7278be8eda83177d4035c
3
+ size 108123
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff44dc85dc0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7ff44dc87ac0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676437646655123878,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3JvYmVydG8vbWluaWNvbmRhMy9lbnZzL2d5bV9odWdnaW5nL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9yb2JlcnRvL21pbmljb25kYTMvZW52cy9neW1faHVnZ2luZy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGQbFPhcDf7zs3RQ/GQbFPhcDf7zs3RQ/GQbFPhcDf7zs3RQ/GQbFPhcDf7zs3RQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAART3aPqg+l7/z5YU/h48SP79tPz+BScm/XI1DP6GwB77z2q8/sxpHv6I+J77+1cg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAZBsU+FwN/vOzdFD/has66jEkCu4F5I7wZBsU+FwN/vOzdFD/has66jEkCu4F5I7wZBsU+FwN/vOzdFD/has66jEkCu4F5I7wZBsU+FwN/vOzdFD/has66jEkCu4F5I7yUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.38481215 -0.0155647 0.58151126]\n [ 0.38481215 -0.0155647 0.58151126]\n [ 0.38481215 -0.0155647 0.58151126]\n [ 0.38481215 -0.0155647 0.58151126]]",
60
+ "desired_goal": "[[ 0.4262487 -1.1815996 1.04608 ]\n [ 0.57250255 0.74776834 -1.5725557 ]\n [ 0.7638757 -0.13250972 1.3738693 ]\n [-0.77775115 -0.16332486 1.5690305 ]]",
61
+ "observation": "[[ 0.38481215 -0.0155647 0.58151126 -0.00157484 -0.00198803 -0.0099777 ]\n [ 0.38481215 -0.0155647 0.58151126 -0.00157484 -0.00198803 -0.0099777 ]\n [ 0.38481215 -0.0155647 0.58151126 -0.00157484 -0.00198803 -0.0099777 ]\n [ 0.38481215 -0.0155647 0.58151126 -0.00157484 -0.00198803 -0.0099777 ]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAE3izPLiuUzyzlKE8hjsaPf3ksL3aKy8+7iztPf+syj36gac9WeDMPZjf3T1gRAQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.02190784 0.01292007 0.01972423]\n [ 0.03765442 -0.08637426 0.17106572]\n [ 0.11580835 0.09896278 0.08179088]\n [ 0.10003728 0.10833663 0.12916708]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM/lmmxuT8b+UhpRSlIwBbJRLMowBdJRHQJmJspPRArx1fZQoaAZoCWgPQwjNr+YAwZz3v5SGlFKUaBVLMmgWR0CZiXQC0WuYdX2UKGgGaAloD0MItqLNcW7T8b+UhpRSlGgVSzJoFkdAmYkyk9ECvHV9lChoBmgJaA9DCJW1TfG4aAjAlIaUUpRoFUsyaBZHQJmI8ht+Csh1fZQoaAZoCWgPQwipv15hwT0QwJSGlFKUaBVLMmgWR0CZixjd56dEdX2UKGgGaAloD0MI/gsEATK0CcCUhpRSlGgVSzJoFkdAmYraQeV9nnV9lChoBmgJaA9DCPQxHxDoDAzAlIaUUpRoFUsyaBZHQJmKmMl1KXh1fZQoaAZoCWgPQwifPgJ/+PkJwJSGlFKUaBVLMmgWR0CZilhSLqD9dX2UKGgGaAloD0MIzT0kfO8PAcCUhpRSlGgVSzJoFkdAmYx/kq+ajXV9lChoBmgJaA9DCFLy6hwD8g3AlIaUUpRoFUsyaBZHQJmMQO7QLNR1fZQoaAZoCWgPQwj/dW7ajFPuv5SGlFKUaBVLMmgWR0CZi/+qzZ6EdX2UKGgGaAloD0MIaCCWzRySEMCUhpRSlGgVSzJoFkdAmYu/KU3XI3V9lChoBmgJaA9DCHi2R2+4j++/lIaUUpRoFUsyaBZHQJmN4c7yQPt1fZQoaAZoCWgPQwgPRuwTQJEMwJSGlFKUaBVLMmgWR0CZjaMb3oLYdX2UKGgGaAloD0MIGuCCbFmeDsCUhpRSlGgVSzJoFkdAmY1hp5/smnV9lChoBmgJaA9DCG2oGOdvAhPAlIaUUpRoFUsyaBZHQJmNISElE7Z1fZQoaAZoCWgPQwjtKM5RR+cPwJSGlFKUaBVLMmgWR0CZjz+tKZlWdX2UKGgGaAloD0MI1O5XAb5bCcCUhpRSlGgVSzJoFkdAmY8BBAv+O3V9lChoBmgJaA9DCHIZNzXQjBDAlIaUUpRoFUsyaBZHQJmOv4k/r0J1fZQoaAZoCWgPQwhVibK3lBMQwJSGlFKUaBVLMmgWR0CZjn73fyf+dX2UKGgGaAloD0MI/FQVGohl+7+UhpRSlGgVSzJoFkdAmZCuLiuMdnV9lChoBmgJaA9DCGQD6WLTCgDAlIaUUpRoFUsyaBZHQJmQb3N9ph51fZQoaAZoCWgPQwjxLhfxnWgSwJSGlFKUaBVLMmgWR0CZkC4B3iaRdX2UKGgGaAloD0MIE+6Veauu/r+UhpRSlGgVSzJoFkdAmY/tr9ETg3V9lChoBmgJaA9DCL+5v3rcdwvAlIaUUpRoFUsyaBZHQJmSB7WuoxZ1fZQoaAZoCWgPQwj4+lqXGiEQwJSGlFKUaBVLMmgWR0CZkckTHsC1dX2UKGgGaAloD0MI2J3uPPG8BMCUhpRSlGgVSzJoFkdAmZGHoTwlSnV9lChoBmgJaA9DCMkfDDz3fgbAlIaUUpRoFUsyaBZHQJmRRxVAAyV1fZQoaAZoCWgPQwjzOuKQDUQXwJSGlFKUaBVLMmgWR0CZk3rYXfqHdX2UKGgGaAloD0MIsz9Qbtv3A8CUhpRSlGgVSzJoFkdAmZM8My8BdXV9lChoBmgJaA9DCO7PRUPGgwjAlIaUUpRoFUsyaBZHQJmS+sijcmB1fZQoaAZoCWgPQwgz38FPHNATwJSGlFKUaBVLMmgWR0CZkror4FibdX2UKGgGaAloD0MIxQQ1fAvLFsCUhpRSlGgVSzJoFkdAmZTmHk92YHV9lChoBmgJaA9DCD2bVZ+rrRLAlIaUUpRoFUsyaBZHQJmUp58jRlZ1fZQoaAZoCWgPQwgddAmH3uILwJSGlFKUaBVLMmgWR0CZlGbO/tY0dX2UKGgGaAloD0MIiGUzh6RW8L+UhpRSlGgVSzJoFkdAmZQmq5sj3XV9lChoBmgJaA9DCFIpdjQONQjAlIaUUpRoFUsyaBZHQJmWUC4jKPp1fZQoaAZoCWgPQwhW9IdmnjwUwJSGlFKUaBVLMmgWR0CZlhGC7K7qdX2UKGgGaAloD0MI+1ksRfKV/L+UhpRSlGgVSzJoFkdAmZXQEpy6tnV9lChoBmgJaA9DCNjzNctl4wzAlIaUUpRoFUsyaBZHQJmVj3lCCz11fZQoaAZoCWgPQwhQ4978hikRwJSGlFKUaBVLMmgWR0CZl7xH5JsgdX2UKGgGaAloD0MIQKa1aWzv+r+UhpRSlGgVSzJoFkdAmZd9rj5sTHV9lChoBmgJaA9DCLJmZJC7CAPAlIaUUpRoFUsyaBZHQJmXPF0gbId1fZQoaAZoCWgPQwgrM6X1t2QOwJSGlFKUaBVLMmgWR0CZlvvf0mMPdX2UKGgGaAloD0MIVn+EYcDSCMCUhpRSlGgVSzJoFkdAmZkpQk5ZKXV9lChoBmgJaA9DCMZtNIC3QAzAlIaUUpRoFUsyaBZHQJmY6ojv/ip1fZQoaAZoCWgPQwiDTZ1Hxb8CwJSGlFKUaBVLMmgWR0CZmKkYoAn2dX2UKGgGaAloD0MINQwfEVPCAMCUhpRSlGgVSzJoFkdAmZhooy9EkXV9lChoBmgJaA9DCNeGinH+ZgDAlIaUUpRoFUsyaBZHQJmakyP+4sp1fZQoaAZoCWgPQwj1LAjlfQwQwJSGlFKUaBVLMmgWR0CZmlRdyDIzdX2UKGgGaAloD0MI+DJRhNTt+b+UhpRSlGgVSzJoFkdAmZoS1iONpHV9lChoBmgJaA9DCJl+iXjrXA7AlIaUUpRoFUsyaBZHQJmZ0kt29td1fZQoaAZoCWgPQwi+wRcmU+UPwJSGlFKUaBVLMmgWR0CZm/az/p+udX2UKGgGaAloD0MIOC9OfLWjEsCUhpRSlGgVSzJoFkdAmZu4Er5IpnV9lChoBmgJaA9DCF3eHK7VXg7AlIaUUpRoFUsyaBZHQJmbdprULD11fZQoaAZoCWgPQwhMb38uGoIQwJSGlFKUaBVLMmgWR0CZmzYPXkHVdX2UKGgGaAloD0MI7Eyh8xrrFMCUhpRSlGgVSzJoFkdAmZ1ahlDneXV9lChoBmgJaA9DCNVamIV2jgDAlIaUUpRoFUsyaBZHQJmdG+sYEW91fZQoaAZoCWgPQwghj+BGypYFwJSGlFKUaBVLMmgWR0CZnNp2U0N0dX2UKGgGaAloD0MIEHo2qz63CsCUhpRSlGgVSzJoFkdAmZyZ2yLQ5XV9lChoBmgJaA9DCF3cRgN4CxTAlIaUUpRoFUsyaBZHQJmeuO3lS0l1fZQoaAZoCWgPQwiFJR5QNhUQwJSGlFKUaBVLMmgWR0CZnnpHqeK9dX2UKGgGaAloD0MIud42UyG+CcCUhpRSlGgVSzJoFkdAmZ444VARkHV9lChoBmgJaA9DCG4164zvqwXAlIaUUpRoFUsyaBZHQJmd+FN+LFZ1fZQoaAZoCWgPQwiuu3mqQy4SwJSGlFKUaBVLMmgWR0CZoBjLB9CvdX2UKGgGaAloD0MI7zzxnC1g/L+UhpRSlGgVSzJoFkdAmZ/aFmFrVXV9lChoBmgJaA9DCC4gtB6+DAnAlIaUUpRoFUsyaBZHQJmfmLKmsNl1fZQoaAZoCWgPQwgwmwDD8kcGwJSGlFKUaBVLMmgWR0CZn1fzSThYdX2UKGgGaAloD0MI7WRwlLz6/L+UhpRSlGgVSzJoFkdAmaFz9XLeRHV9lChoBmgJaA9DCAmKH2PuegfAlIaUUpRoFUsyaBZHQJmhNWHUMG51fZQoaAZoCWgPQwjfN772zFIHwJSGlFKUaBVLMmgWR0CZoPP0I1LrdX2UKGgGaAloD0MInRIQk3AhEsCUhpRSlGgVSzJoFkdAmaCzU/fO2XV9lChoBmgJaA9DCJJ1OLpKN/+/lIaUUpRoFUsyaBZHQJmi1+mWMS91fZQoaAZoCWgPQwhB8Pj2rgEJwJSGlFKUaBVLMmgWR0CZopk0rK/3dX2UKGgGaAloD0MIhbGFIAelBMCUhpRSlGgVSzJoFkdAmaJXwgDA8HV9lChoBmgJaA9DCOIEptO63RDAlIaUUpRoFUsyaBZHQJmiFzkp7Tl1fZQoaAZoCWgPQwhPPGcLCC0FwJSGlFKUaBVLMmgWR0CZpDq3VkMDdX2UKGgGaAloD0MIcHmsGRmkAcCUhpRSlGgVSzJoFkdAmaP8AWBSUHV9lChoBmgJaA9DCDJaR1UTRATAlIaUUpRoFUsyaBZHQJmjupyZKFt1fZQoaAZoCWgPQwjFVtC0xGoMwJSGlFKUaBVLMmgWR0CZo3oFV1fWdX2UKGgGaAloD0MIQUgWMIGbC8CUhpRSlGgVSzJoFkdAmaWaPKdQPHV9lChoBmgJaA9DCHB87ZklAQvAlIaUUpRoFUsyaBZHQJmlW4rjHXF1fZQoaAZoCWgPQwgmb4CZ7wADwJSGlFKUaBVLMmgWR0CZpRoXKr7wdX2UKGgGaAloD0MI492Rsdr8+7+UhpRSlGgVSzJoFkdAmaTZhjOLSHV9lChoBmgJaA9DCIarAyDuqgfAlIaUUpRoFUsyaBZHQJmm+nfl6qt1fZQoaAZoCWgPQwjGw3sOLEcKwJSGlFKUaBVLMmgWR0CZprva11GLdX2UKGgGaAloD0MIXWqEfqZuF8CUhpRSlGgVSzJoFkdAmaZ6YqoZRHV9lChoBmgJaA9DCEDdQIF3UgLAlIaUUpRoFUsyaBZHQJmmObNKRMh1fZQoaAZoCWgPQwiSk4lbBTEEwJSGlFKUaBVLMmgWR0CZqFcYZVGTdX2UKGgGaAloD0MIV1pG6j2lFcCUhpRSlGgVSzJoFkdAmagYcaOxS3V9lChoBmgJaA9DCArcupunmgLAlIaUUpRoFUsyaBZHQJmn1vFWGRF1fZQoaAZoCWgPQwj5SbVPx4MPwJSGlFKUaBVLMmgWR0CZp5ZJkGzKdX2UKGgGaAloD0MITyFX6llwDMCUhpRSlGgVSzJoFkdAmam2I0qH5HV9lChoBmgJaA9DCBiyutVz8gvAlIaUUpRoFUsyaBZHQJmpd4dIXj51fZQoaAZoCWgPQwi/7nTniScIwJSGlFKUaBVLMmgWR0CZqTYfGMn7dX2UKGgGaAloD0MI75I4K6Lm/r+UhpRSlGgVSzJoFkdAmaj1lkH2RXV9lChoBmgJaA9DCE8jLZW34xnAlIaUUpRoFUsyaBZHQJmrEnogV451fZQoaAZoCWgPQwgPlxx3SscEwJSGlFKUaBVLMmgWR0CZqtPkaMrFdX2UKGgGaAloD0MI7gp9sIyNCcCUhpRSlGgVSzJoFkdAmaqSZOSGJ3V9lChoBmgJaA9DCHPxtz1BghfAlIaUUpRoFUsyaBZHQJmqUdbPhQ51ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ac9e70c6371fd7fc85cec11b4c0d7bb4e40b68b1793e62820fa53285889ecf3
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18c23bfa1969113b14c141acc6394dfe094c55e8f62769e522d93e7cdab33acd
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-60-generic-x86_64-with-glibc2.35 # 66-Ubuntu SMP Fri Jan 20 14:29:49 UTC 2023
2
+ - Python: 3.9.0
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff44dc85dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff44dc87ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676437646655123878, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3JvYmVydG8vbWluaWNvbmRhMy9lbnZzL2d5bV9odWdnaW5nL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9yb2JlcnRvL21pbmljb25kYTMvZW52cy9neW1faHVnZ2luZy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGQbFPhcDf7zs3RQ/GQbFPhcDf7zs3RQ/GQbFPhcDf7zs3RQ/GQbFPhcDf7zs3RQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAART3aPqg+l7/z5YU/h48SP79tPz+BScm/XI1DP6GwB77z2q8/sxpHv6I+J77+1cg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAZBsU+FwN/vOzdFD/has66jEkCu4F5I7wZBsU+FwN/vOzdFD/has66jEkCu4F5I7wZBsU+FwN/vOzdFD/has66jEkCu4F5I7wZBsU+FwN/vOzdFD/has66jEkCu4F5I7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38481215 -0.0155647 0.58151126]\n [ 0.38481215 -0.0155647 0.58151126]\n [ 0.38481215 -0.0155647 0.58151126]\n [ 0.38481215 -0.0155647 0.58151126]]", "desired_goal": "[[ 0.4262487 -1.1815996 1.04608 ]\n [ 0.57250255 0.74776834 -1.5725557 ]\n [ 0.7638757 -0.13250972 1.3738693 ]\n [-0.77775115 -0.16332486 1.5690305 ]]", "observation": "[[ 0.38481215 -0.0155647 0.58151126 -0.00157484 -0.00198803 -0.0099777 ]\n [ 0.38481215 -0.0155647 0.58151126 -0.00157484 -0.00198803 -0.0099777 ]\n [ 0.38481215 -0.0155647 0.58151126 -0.00157484 -0.00198803 -0.0099777 ]\n [ 0.38481215 -0.0155647 0.58151126 -0.00157484 -0.00198803 -0.0099777 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAE3izPLiuUzyzlKE8hjsaPf3ksL3aKy8+7iztPf+syj36gac9WeDMPZjf3T1gRAQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02190784 0.01292007 0.01972423]\n [ 0.03765442 -0.08637426 0.17106572]\n [ 0.11580835 0.09896278 0.08179088]\n [ 0.10003728 0.10833663 0.12916708]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM/lmmxuT8b+UhpRSlIwBbJRLMowBdJRHQJmJspPRArx1fZQoaAZoCWgPQwjNr+YAwZz3v5SGlFKUaBVLMmgWR0CZiXQC0WuYdX2UKGgGaAloD0MItqLNcW7T8b+UhpRSlGgVSzJoFkdAmYkyk9ECvHV9lChoBmgJaA9DCJW1TfG4aAjAlIaUUpRoFUsyaBZHQJmI8ht+Csh1fZQoaAZoCWgPQwipv15hwT0QwJSGlFKUaBVLMmgWR0CZixjd56dEdX2UKGgGaAloD0MI/gsEATK0CcCUhpRSlGgVSzJoFkdAmYraQeV9nnV9lChoBmgJaA9DCPQxHxDoDAzAlIaUUpRoFUsyaBZHQJmKmMl1KXh1fZQoaAZoCWgPQwifPgJ/+PkJwJSGlFKUaBVLMmgWR0CZilhSLqD9dX2UKGgGaAloD0MIzT0kfO8PAcCUhpRSlGgVSzJoFkdAmYx/kq+ajXV9lChoBmgJaA9DCFLy6hwD8g3AlIaUUpRoFUsyaBZHQJmMQO7QLNR1fZQoaAZoCWgPQwj/dW7ajFPuv5SGlFKUaBVLMmgWR0CZi/+qzZ6EdX2UKGgGaAloD0MIaCCWzRySEMCUhpRSlGgVSzJoFkdAmYu/KU3XI3V9lChoBmgJaA9DCHi2R2+4j++/lIaUUpRoFUsyaBZHQJmN4c7yQPt1fZQoaAZoCWgPQwgPRuwTQJEMwJSGlFKUaBVLMmgWR0CZjaMb3oLYdX2UKGgGaAloD0MIGuCCbFmeDsCUhpRSlGgVSzJoFkdAmY1hp5/smnV9lChoBmgJaA9DCG2oGOdvAhPAlIaUUpRoFUsyaBZHQJmNISElE7Z1fZQoaAZoCWgPQwjtKM5RR+cPwJSGlFKUaBVLMmgWR0CZjz+tKZlWdX2UKGgGaAloD0MI1O5XAb5bCcCUhpRSlGgVSzJoFkdAmY8BBAv+O3V9lChoBmgJaA9DCHIZNzXQjBDAlIaUUpRoFUsyaBZHQJmOv4k/r0J1fZQoaAZoCWgPQwhVibK3lBMQwJSGlFKUaBVLMmgWR0CZjn73fyf+dX2UKGgGaAloD0MI/FQVGohl+7+UhpRSlGgVSzJoFkdAmZCuLiuMdnV9lChoBmgJaA9DCGQD6WLTCgDAlIaUUpRoFUsyaBZHQJmQb3N9ph51fZQoaAZoCWgPQwjxLhfxnWgSwJSGlFKUaBVLMmgWR0CZkC4B3iaRdX2UKGgGaAloD0MIE+6Veauu/r+UhpRSlGgVSzJoFkdAmY/tr9ETg3V9lChoBmgJaA9DCL+5v3rcdwvAlIaUUpRoFUsyaBZHQJmSB7WuoxZ1fZQoaAZoCWgPQwj4+lqXGiEQwJSGlFKUaBVLMmgWR0CZkckTHsC1dX2UKGgGaAloD0MI2J3uPPG8BMCUhpRSlGgVSzJoFkdAmZGHoTwlSnV9lChoBmgJaA9DCMkfDDz3fgbAlIaUUpRoFUsyaBZHQJmRRxVAAyV1fZQoaAZoCWgPQwjzOuKQDUQXwJSGlFKUaBVLMmgWR0CZk3rYXfqHdX2UKGgGaAloD0MIsz9Qbtv3A8CUhpRSlGgVSzJoFkdAmZM8My8BdXV9lChoBmgJaA9DCO7PRUPGgwjAlIaUUpRoFUsyaBZHQJmS+sijcmB1fZQoaAZoCWgPQwgz38FPHNATwJSGlFKUaBVLMmgWR0CZkror4FibdX2UKGgGaAloD0MIxQQ1fAvLFsCUhpRSlGgVSzJoFkdAmZTmHk92YHV9lChoBmgJaA9DCD2bVZ+rrRLAlIaUUpRoFUsyaBZHQJmUp58jRlZ1fZQoaAZoCWgPQwgddAmH3uILwJSGlFKUaBVLMmgWR0CZlGbO/tY0dX2UKGgGaAloD0MIiGUzh6RW8L+UhpRSlGgVSzJoFkdAmZQmq5sj3XV9lChoBmgJaA9DCFIpdjQONQjAlIaUUpRoFUsyaBZHQJmWUC4jKPp1fZQoaAZoCWgPQwhW9IdmnjwUwJSGlFKUaBVLMmgWR0CZlhGC7K7qdX2UKGgGaAloD0MI+1ksRfKV/L+UhpRSlGgVSzJoFkdAmZXQEpy6tnV9lChoBmgJaA9DCNjzNctl4wzAlIaUUpRoFUsyaBZHQJmVj3lCCz11fZQoaAZoCWgPQwhQ4978hikRwJSGlFKUaBVLMmgWR0CZl7xH5JsgdX2UKGgGaAloD0MIQKa1aWzv+r+UhpRSlGgVSzJoFkdAmZd9rj5sTHV9lChoBmgJaA9DCLJmZJC7CAPAlIaUUpRoFUsyaBZHQJmXPF0gbId1fZQoaAZoCWgPQwgrM6X1t2QOwJSGlFKUaBVLMmgWR0CZlvvf0mMPdX2UKGgGaAloD0MIVn+EYcDSCMCUhpRSlGgVSzJoFkdAmZkpQk5ZKXV9lChoBmgJaA9DCMZtNIC3QAzAlIaUUpRoFUsyaBZHQJmY6ojv/ip1fZQoaAZoCWgPQwiDTZ1Hxb8CwJSGlFKUaBVLMmgWR0CZmKkYoAn2dX2UKGgGaAloD0MINQwfEVPCAMCUhpRSlGgVSzJoFkdAmZhooy9EkXV9lChoBmgJaA9DCNeGinH+ZgDAlIaUUpRoFUsyaBZHQJmakyP+4sp1fZQoaAZoCWgPQwj1LAjlfQwQwJSGlFKUaBVLMmgWR0CZmlRdyDIzdX2UKGgGaAloD0MI+DJRhNTt+b+UhpRSlGgVSzJoFkdAmZoS1iONpHV9lChoBmgJaA9DCJl+iXjrXA7AlIaUUpRoFUsyaBZHQJmZ0kt29td1fZQoaAZoCWgPQwi+wRcmU+UPwJSGlFKUaBVLMmgWR0CZm/az/p+udX2UKGgGaAloD0MIOC9OfLWjEsCUhpRSlGgVSzJoFkdAmZu4Er5IpnV9lChoBmgJaA9DCF3eHK7VXg7AlIaUUpRoFUsyaBZHQJmbdprULD11fZQoaAZoCWgPQwhMb38uGoIQwJSGlFKUaBVLMmgWR0CZmzYPXkHVdX2UKGgGaAloD0MI7Eyh8xrrFMCUhpRSlGgVSzJoFkdAmZ1ahlDneXV9lChoBmgJaA9DCNVamIV2jgDAlIaUUpRoFUsyaBZHQJmdG+sYEW91fZQoaAZoCWgPQwghj+BGypYFwJSGlFKUaBVLMmgWR0CZnNp2U0N0dX2UKGgGaAloD0MIEHo2qz63CsCUhpRSlGgVSzJoFkdAmZyZ2yLQ5XV9lChoBmgJaA9DCF3cRgN4CxTAlIaUUpRoFUsyaBZHQJmeuO3lS0l1fZQoaAZoCWgPQwiFJR5QNhUQwJSGlFKUaBVLMmgWR0CZnnpHqeK9dX2UKGgGaAloD0MIud42UyG+CcCUhpRSlGgVSzJoFkdAmZ444VARkHV9lChoBmgJaA9DCG4164zvqwXAlIaUUpRoFUsyaBZHQJmd+FN+LFZ1fZQoaAZoCWgPQwiuu3mqQy4SwJSGlFKUaBVLMmgWR0CZoBjLB9CvdX2UKGgGaAloD0MI7zzxnC1g/L+UhpRSlGgVSzJoFkdAmZ/aFmFrVXV9lChoBmgJaA9DCC4gtB6+DAnAlIaUUpRoFUsyaBZHQJmfmLKmsNl1fZQoaAZoCWgPQwgwmwDD8kcGwJSGlFKUaBVLMmgWR0CZn1fzSThYdX2UKGgGaAloD0MI7WRwlLz6/L+UhpRSlGgVSzJoFkdAmaFz9XLeRHV9lChoBmgJaA9DCAmKH2PuegfAlIaUUpRoFUsyaBZHQJmhNWHUMG51fZQoaAZoCWgPQwjfN772zFIHwJSGlFKUaBVLMmgWR0CZoPP0I1LrdX2UKGgGaAloD0MInRIQk3AhEsCUhpRSlGgVSzJoFkdAmaCzU/fO2XV9lChoBmgJaA9DCJJ1OLpKN/+/lIaUUpRoFUsyaBZHQJmi1+mWMS91fZQoaAZoCWgPQwhB8Pj2rgEJwJSGlFKUaBVLMmgWR0CZopk0rK/3dX2UKGgGaAloD0MIhbGFIAelBMCUhpRSlGgVSzJoFkdAmaJXwgDA8HV9lChoBmgJaA9DCOIEptO63RDAlIaUUpRoFUsyaBZHQJmiFzkp7Tl1fZQoaAZoCWgPQwhPPGcLCC0FwJSGlFKUaBVLMmgWR0CZpDq3VkMDdX2UKGgGaAloD0MIcHmsGRmkAcCUhpRSlGgVSzJoFkdAmaP8AWBSUHV9lChoBmgJaA9DCDJaR1UTRATAlIaUUpRoFUsyaBZHQJmjupyZKFt1fZQoaAZoCWgPQwjFVtC0xGoMwJSGlFKUaBVLMmgWR0CZo3oFV1fWdX2UKGgGaAloD0MIQUgWMIGbC8CUhpRSlGgVSzJoFkdAmaWaPKdQPHV9lChoBmgJaA9DCHB87ZklAQvAlIaUUpRoFUsyaBZHQJmlW4rjHXF1fZQoaAZoCWgPQwgmb4CZ7wADwJSGlFKUaBVLMmgWR0CZpRoXKr7wdX2UKGgGaAloD0MI492Rsdr8+7+UhpRSlGgVSzJoFkdAmaTZhjOLSHV9lChoBmgJaA9DCIarAyDuqgfAlIaUUpRoFUsyaBZHQJmm+nfl6qt1fZQoaAZoCWgPQwjGw3sOLEcKwJSGlFKUaBVLMmgWR0CZprva11GLdX2UKGgGaAloD0MIXWqEfqZuF8CUhpRSlGgVSzJoFkdAmaZ6YqoZRHV9lChoBmgJaA9DCEDdQIF3UgLAlIaUUpRoFUsyaBZHQJmmObNKRMh1fZQoaAZoCWgPQwiSk4lbBTEEwJSGlFKUaBVLMmgWR0CZqFcYZVGTdX2UKGgGaAloD0MIV1pG6j2lFcCUhpRSlGgVSzJoFkdAmagYcaOxS3V9lChoBmgJaA9DCArcupunmgLAlIaUUpRoFUsyaBZHQJmn1vFWGRF1fZQoaAZoCWgPQwj5SbVPx4MPwJSGlFKUaBVLMmgWR0CZp5ZJkGzKdX2UKGgGaAloD0MITyFX6llwDMCUhpRSlGgVSzJoFkdAmam2I0qH5HV9lChoBmgJaA9DCBiyutVz8gvAlIaUUpRoFUsyaBZHQJmpd4dIXj51fZQoaAZoCWgPQwi/7nTniScIwJSGlFKUaBVLMmgWR0CZqTYfGMn7dX2UKGgGaAloD0MI75I4K6Lm/r+UhpRSlGgVSzJoFkdAmaj1lkH2RXV9lChoBmgJaA9DCE8jLZW34xnAlIaUUpRoFUsyaBZHQJmrEnogV451fZQoaAZoCWgPQwgPlxx3SscEwJSGlFKUaBVLMmgWR0CZqtPkaMrFdX2UKGgGaAloD0MI7gp9sIyNCcCUhpRSlGgVSzJoFkdAmaqSZOSGJ3V9lChoBmgJaA9DCHPxtz1BghfAlIaUUpRoFUsyaBZHQJmqUdbPhQ51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-60-generic-x86_64-with-glibc2.35 # 66-Ubuntu SMP Fri Jan 20 14:29:49 UTC 2023", "Python": "3.9.0", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (731 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.0596019063610584, "std_reward": 1.1935489366664491, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-14T22:34:52.374717"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:336d961ad642186c392dc9f7c818160d2136d9ffc10225639aca7637d4d64c01
3
+ size 3056