bnriiitb commited on
Commit
e7a4c8c
·
1 Parent(s): 5fc4dec

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -0
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - te
4
+ license: apache-2.0
5
+ tags:
6
+ - hf-asr-leaderboard
7
+ - generated_from_trainer
8
+ datasets:
9
+ - IndicSUPERB_train_validation_splits
10
+ metrics:
11
+ - wer
12
+ model-index:
13
+ - name: Whisper Small Telugu - Naga Budigam
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: IndicSUPERB train and validation splits
20
+ type: IndicSUPERB train and validation splits
21
+ config: None
22
+ split: None
23
+ args: 'config: te, split: test'
24
+ metrics:
25
+ - name: Wer
26
+ type: wer
27
+ value: 38.14924740301039
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # Whisper Small Telugu - Naga Budigam
34
+
35
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Chai_Bisket_Stories_16-08-2021_14-17 dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.2875
38
+ - Wer: 38.1492
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 1e-05
58
+ - train_batch_size: 8
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 2
62
+ - total_train_batch_size: 16
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - lr_scheduler_warmup_steps: 500
66
+ - training_steps: 15000
67
+ - mixed_precision_training: Native AMP
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
72
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|
73
+ | 0.2064 | 0.66 | 500 | 0.2053 | 60.1707 |
74
+ | 0.1399 | 1.33 | 1000 | 0.1535 | 49.3269 |
75
+ | 0.1093 | 1.99 | 1500 | 0.1365 | 44.5516 |
76
+ | 0.0771 | 2.66 | 2000 | 0.1316 | 42.1136 |
77
+ | 0.0508 | 3.32 | 2500 | 0.1395 | 41.1384 |
78
+ | 0.0498 | 3.99 | 3000 | 0.1386 | 40.5395 |
79
+ | 0.0302 | 4.65 | 3500 | 0.1529 | 40.9529 |
80
+ | 0.0157 | 5.32 | 4000 | 0.1719 | 40.6667 |
81
+ | 0.0183 | 5.98 | 4500 | 0.1723 | 40.3646 |
82
+ | 0.0083 | 6.65 | 5000 | 0.1911 | 40.4335 |
83
+ | 0.0061 | 7.31 | 5500 | 0.2109 | 40.4176 |
84
+ | 0.0055 | 7.98 | 6000 | 0.2075 | 39.7021 |
85
+ | 0.0039 | 8.64 | 6500 | 0.2186 | 40.2639 |
86
+ | 0.0026 | 9.31 | 7000 | 0.2254 | 39.1032 |
87
+ | 0.0035 | 9.97 | 7500 | 0.2289 | 39.2834 |
88
+ | 0.0016 | 10.64 | 8000 | 0.2332 | 39.1456 |
89
+ | 0.0016 | 11.3 | 8500 | 0.2395 | 39.4371 |
90
+ | 0.0016 | 11.97 | 9000 | 0.2447 | 39.2410 |
91
+ | 0.0009 | 12.63 | 9500 | 0.2548 | 38.7799 |
92
+ | 0.0008 | 13.3 | 10000 | 0.2551 | 38.7481 |
93
+ | 0.0008 | 13.96 | 10500 | 0.2621 | 38.8276 |
94
+ | 0.0007 | 14.63 | 11000 | 0.2633 | 38.6686 |
95
+ | 0.0003 | 15.29 | 11500 | 0.2711 | 38.4566 |
96
+ | 0.0005 | 15.96 | 12000 | 0.2772 | 38.7852 |
97
+ | 0.0001 | 16.62 | 12500 | 0.2771 | 38.2658 |
98
+ | 0.0001 | 17.29 | 13000 | 0.2808 | 38.2393 |
99
+ | 0.0001 | 17.95 | 13500 | 0.2815 | 38.1810 |
100
+ | 0.0 | 18.62 | 14000 | 0.2854 | 38.2022 |
101
+ | 0.0 | 19.28 | 14500 | 0.2872 | 38.1333 |
102
+ | 0.0 | 19.95 | 15000 | 0.2875 | 38.1492 |
103
+
104
+
105
+ ### Framework versions
106
+
107
+ - Transformers 4.26.0.dev0
108
+ - Pytorch 1.13.0
109
+ - Datasets 2.7.1
110
+ - Tokenizers 0.13.2