bnowak1831 commited on
Commit
7576415
1 Parent(s): d692dd8

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1608.24 +/- 135.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1e90872e3843aa774ee7947ab8e550ed69724a967be3729f149f88f7daa7d71
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6eed46d1f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6eed46d280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6eed46d310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6eed46d3a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6eed46d430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6eed46d4c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6eed46d550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6eed46d5e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6eed46d670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6eed46d700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6eed46d790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6eed46d820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f6eed46e060>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677598467648466033,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALkJvzwqtwA/5Q/iPhEovz46Ft8+MyJSP2iAnz7XqQm/NLEIP1QXnjx/uVA/S6enPkhJrb99P9W/vdUhP/ZV47wLAkM+XXiSv9Nv8j69JUE/kYoSv+TwsrwimJ+/sun4vGfaaD/+INa//pT/Ps8zjL+4nRc/t1ewPoNOAD9UrN0/NlJov/UOa75oqQC/kcajv7hOBz+MSuO83xpWPirP1L9v91W/h5dkP8Lk2j5QHgQ/hERevyYXCD8meh0/1culv06g1b1x2Tw+PP4Fv7np4T9RuYy/ggcZP/6U/z7PM4y/ozPWvQR6kz9KRTe9J+4dP4iqHz/XkQo/HJgnvib9PruLDgc/GQmsu7iJWb8RoAA/wUC6Pa+3KT9mgkI+LSifvg9uiT/7yNI/mxGnvtZD879/GxK/n7nbOwFEkD55EuY9UbmMv4IHGT+XNQDAI7hpPwuts78N7G0/B1IvPiJo1b39Eua/KisBvyFuSD56ZWW+rA0JPxvalb2Rjpu+qPxRv06Wqr9gt+E+zWLrPk7aej6qj9W+yY6hvYDPkT8RBrW8f3OrvrIt9j45Xgu/IB/jP2faaD/+INa//pT/Ps8zjL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC36tk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkh2MvQAAAACREwHAAAAAAHwbBj4AAAAA8+zwPwAAAABUTQu9AAAAABY7/j8AAAAASKTjvQAAAAAlZ/m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfnKJtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG/Yqj0AAAAAA9f0vwAAAAAOc2k9AAAAABgJ+T8AAAAAteOlPQAAAAB2ivA/AAAAALp3hj0AAAAAsyD4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSWE7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQwG89AAAAABaF8b8AAAAAtJq/vQAAAABkMt8/AAAAAB5Ws70AAAAAW/jwPwAAAADF4gk+AAAAAL/39r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACicxK3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuhQOPQAAAAD1G+y/AAAAALrMDL4AAAAA2fgAQAAAAAB18qq9AAAAAAYw8j8AAAAAxLX2PQAAAACwY/y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJvkGiGnGbWMAWyUTegDjAF0lEdAqiWhB7eEZnV9lChoBkdAkmwX4fwI+mgHTegDaAhHQKol1V94NZx1fZQoaAZHQJvX9vIfbK1oB03oA2gIR0CqJgymygPFdX2UKGgGR0CV/gOxjawmaAdN6ANoCEdAqicki4axYHV9lChoBkdAnMzR/EwWWWgHTegDaAhHQKoyliay8jB1fZQoaAZHQJbfP1UVBUtoB03oA2gIR0CqMu/vfCQ+dX2UKGgGR0CdT06zVtoBaAdN6ANoCEdAqjNFnkDIR3V9lChoBkdAlhPw4XGfgGgHTegDaAhHQKo06uyu6mR1fZQoaAZHQJvcplQMx49oB03oA2gIR0CqQZGQKa5PdX2UKGgGR0CSC0FqSHM2aAdN6ANoCEdAqkHG2VmjCnV9lChoBkdAnRl0ZWJaaGgHTegDaAhHQKpB/hOxjax1fZQoaAZHQJ1fan3ta6loB03oA2gIR0CqQxqu8scydX2UKGgGR0CXCjexOclPaAdN6ANoCEdAqk3tie/Ya3V9lChoBkdAl6S6tknTiWgHTegDaAhHQKpOIXC0ngJ1fZQoaAZHQJrV3M6ij+JoB03oA2gIR0CqTno4EOiGdX2UKGgGR0CZrASt/4IsaAdN6ANoCEdAqlAUPhAGCHV9lChoBkdAme465sj3VWgHTegDaAhHQKpdsyeqaPV1fZQoaAZHQJoLK1kUbkxoB03oA2gIR0CqXeYWDYh/dX2UKGgGR0CXBjLXtjTbaAdN6ANoCEdAql4fovBacXV9lChoBkdAlWF+yquKXWgHTegDaAhHQKpfSyEcsDp1fZQoaAZHQJCwRPl+3H9oB03oA2gIR0Cqad6PbO/tdX2UKGgGR0CcADdBBzFNaAdN6ANoCEdAqmoRZdOZcHV9lChoBkdAnhG/Q0GeMGgHTegDaAhHQKpqSAggX/J1fZQoaAZHQJofIrlNlAhoB03oA2gIR0Cqa2VKXfIkdX2UKGgGR0CaWL77bcoIaAdN6ANoCEdAqnmROi35OHV9lChoBkdAnKFLleWv82gHTegDaAhHQKp5xmcvugJ1fZQoaAZHQJknK0jTrmhoB03oA2gIR0Cqef93bEgodX2UKGgGR0CelOGL1mJ4aAdN6ANoCEdAqnsWfwqiGnV9lChoBkdAnXSflZHNHGgHTegDaAhHQKqF7eBQN1B1fZQoaAZHQJ4eDPMSsbNoB03oA2gIR0CqhiIAOrhjdX2UKGgGR0CfC9eKsMiKaAdN6ANoCEdAqoZckdFOPHV9lChoBkdAnXSWH+Idl2gHTegDaAhHQKqHhxHXmNl1fZQoaAZHQJOs3idat9xoB03oA2gIR0Cqlc593KSxdX2UKGgGR0CdHUQ/5ckdaAdN6ANoCEdAqpYB1/2Cd3V9lChoBkdAmC7V+uvECWgHTegDaAhHQKqWPayKNyZ1fZQoaAZHQJzb8XrMTvloB03oA2gIR0Cql13Ytg8bdX2UKGgGR0CZj4QvYe1baAdN6ANoCEdAqqJIJNTLn3V9lChoBkdAl7BLQTmGNGgHTegDaAhHQKqiffxc3VF1fZQoaAZHQHnWjklu3ttoB03oA2gIR0CqordNN8E3dX2UKGgGR0CWNAlwcYIjaAdN6ANoCEdAqqPRmkFfRnV9lChoBkdAm7eQGB4D92gHTegDaAhHQKqxLDv3JxN1fZQoaAZHQJTTGT5ftyBoB03oA2gIR0CqsYCEQGwBdX2UKGgGR0B+OnUSZjQRaAdN6ANoCEdAqrHb6JqIrXV9lChoBkdAleEe7lJYkmgHTegDaAhHQKqzkCiAUcp1fZQoaAZHQJ07rBUJfIFoB03oA2gIR0CqviNo8IRidX2UKGgGR0CYjDKyfL9uaAdN6ANoCEdAqr5W+VTrFHV9lChoBkdAlLnGozeoDWgHTegDaAhHQKq+knyd4FB1fZQoaAZHQJjZRbD/EO1oB03oA2gIR0Cqv6z/p+tsdX2UKGgGR0CXHzAZsKsuaAdN6ANoCEdAqsvJyn1nNHV9lChoBkdAm3D3w9aEBmgHTegDaAhHQKrMGMVDa5B1fZQoaAZHQJ6ZWMtK7I1oB03oA2gIR0CqzHHI6r/9dX2UKGgGR0CaKp+1jRUnaAdN6ANoCEdAqs4qU3XI2nV9lChoBkdAmQAUdBBzFWgHTegDaAhHQKraOBvrGBF1fZQoaAZHQJZ5COo5xR5oB03oA2gIR0Cq2nIomXw9dX2UKGgGR0CbxPv1lGwzaAdN6ANoCEdAqtqq3solU3V9lChoBkdAnLvr6k6902gHTegDaAhHQKrbzKSPluF1fZQoaAZHQJtiunxaxHJoB03oA2gIR0Cq5sI2n88+dX2UKGgGR0CadmCQtBfKaAdN6ANoCEdAqucQCEHt4XV9lChoBkdAm3G70rbxmWgHTegDaAhHQKrnZMK1G9Z1fZQoaAZHQJsSswTM7ltoB03oA2gIR0Cq6PcdgfEGdX2UKGgGR0CbOJEdNnGsaAdN6ANoCEdAqvZJv3rUsnV9lChoBkdAe/jmbsniN2gHTegDaAhHQKr2f/pdKNB1fZQoaAZHQJeWZDa4+bFoB03oA2gIR0Cq9rj5j6N3dX2UKGgGR0CcJJZntfG/aAdN6ANoCEdAqvfXqqwQlXV9lChoBkdAnw0OaWom5WgHTegDaAhHQKsCx2IO6NF1fZQoaAZHQJf9TDpC8e1oB03oA2gIR0CrAvrf1pTNdX2UKGgGR0CbncDtPYWdaAdN6ANoCEdAqwM1hmXgL3V9lChoBkdAmEu1DneSCGgHTegDaAhHQKsEaVAzHjp1fZQoaAZHQJpUoOPNmlJoB03oA2gIR0CrEnnQQcxTdX2UKGgGR0CeD5htLteEaAdN6ANoCEdAqxKstmL9/HV9lChoBkdAnCBMqvvBrWgHTegDaAhHQKsS5HYHxBp1fZQoaAZHQJ1O/J6po9NoB03oA2gIR0CrE/yeiBXkdX2UKGgGR0CdnvKXOW0JaAdN6ANoCEdAqx63dM0xd3V9lChoBkdAmwNnzDn/1mgHTegDaAhHQKse6UO/cnF1fZQoaAZHQJwf8EbHZK5oB03oA2gIR0CrHyW5QP7OdX2UKGgGR0CZkSUuL740aAdN6ANoCEdAqyA60dBBzHV9lChoBkdAnsJOQQtjC2gHTegDaAhHQKsuZcQiA2B1fZQoaAZHQJwDD6wdKdxoB03oA2gIR0CrLpfaQFLWdX2UKGgGR0CekUNG3F1kaAdN6ANoCEdAqy7QqXnhbXV9lChoBkdAoA8fMbFS9GgHTegDaAhHQKsv/b/wRXh1fZQoaAZHQJweNcY64lRoB03oA2gIR0CrOq9OZb6hdX2UKGgGR0CeDEaGHpKSaAdN6ANoCEdAqzriUxEfDHV9lChoBkdAms9tRJmNBGgHTegDaAhHQKs7HXJYDDF1fZQoaAZHQJv4Nk9U0eloB03oA2gIR0CrPD6isXBQdX2UKGgGR0CdglekpI+XaAdN6ANoCEdAq0oc2WIGhXV9lChoBkdAn12KbayrxWgHTegDaAhHQKtKbYf4h2Z1fZQoaAZHQJ4R77WNFSdoB03oA2gIR0CrSsfXXiBHdX2UKGgGR0Cenldz4k/saAdN6ANoCEdAq0v/FcY64nV9lChoBkdAnw7qIacZtWgHTegDaAhHQKtWrCKJl8R1fZQoaAZHQJ32bYL9deJoB03oA2gIR0CrVuKvNeMRdX2UKGgGR0CgZS/DDTBqaAdN6ANoCEdAq1cebXpW3nV9lChoBkdAnGbjUd7v5WgHTegDaAhHQKtYMRGMGX51fZQoaAZHQJ+UG6NEPUdoB03oA2gIR0CrZJLtVrAQdX2UKGgGR0CUVOg8bJfZaAdN6ANoCEdAq2TigM+eOHV9lChoBkdAmrGx55Z8r2gHTegDaAhHQKtlPh2GIsR1fZQoaAZHQJ33IXizcARoB03oA2gIR0CrZu98zAN5dX2UKGgGR0CbhMvIfbKzaAdN6ANoCEdAq3KUe4kNWnV9lChoBkdAnUpXg1m8NGgHTegDaAhHQKtyyRqXWvt1fZQoaAZHQJuO/zFuNxVoB03oA2gIR0Crcv/w7T2GdX2UKGgGR0CfJ7lz2exwaAdN6ANoCEdAq3QbuQZGa3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fd241ed59d54d733bb76eafe88bc7b8f37dbdb4e9a84c7c4273b1d87f3ee51f
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53a421a5630fd012bf6631ac2360a2bf9555c3ef0cf22f327ecf1ac637e441e6
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6eed46d1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6eed46d280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6eed46d310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6eed46d3a0>", "_build": "<function ActorCriticPolicy._build at 0x7f6eed46d430>", "forward": "<function ActorCriticPolicy.forward at 0x7f6eed46d4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6eed46d550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6eed46d5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6eed46d670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6eed46d700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6eed46d790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6eed46d820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6eed46e060>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677598467648466033, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALkJvzwqtwA/5Q/iPhEovz46Ft8+MyJSP2iAnz7XqQm/NLEIP1QXnjx/uVA/S6enPkhJrb99P9W/vdUhP/ZV47wLAkM+XXiSv9Nv8j69JUE/kYoSv+TwsrwimJ+/sun4vGfaaD/+INa//pT/Ps8zjL+4nRc/t1ewPoNOAD9UrN0/NlJov/UOa75oqQC/kcajv7hOBz+MSuO83xpWPirP1L9v91W/h5dkP8Lk2j5QHgQ/hERevyYXCD8meh0/1culv06g1b1x2Tw+PP4Fv7np4T9RuYy/ggcZP/6U/z7PM4y/ozPWvQR6kz9KRTe9J+4dP4iqHz/XkQo/HJgnvib9PruLDgc/GQmsu7iJWb8RoAA/wUC6Pa+3KT9mgkI+LSifvg9uiT/7yNI/mxGnvtZD879/GxK/n7nbOwFEkD55EuY9UbmMv4IHGT+XNQDAI7hpPwuts78N7G0/B1IvPiJo1b39Eua/KisBvyFuSD56ZWW+rA0JPxvalb2Rjpu+qPxRv06Wqr9gt+E+zWLrPk7aej6qj9W+yY6hvYDPkT8RBrW8f3OrvrIt9j45Xgu/IB/jP2faaD/+INa//pT/Ps8zjL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC36tk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkh2MvQAAAACREwHAAAAAAHwbBj4AAAAA8+zwPwAAAABUTQu9AAAAABY7/j8AAAAASKTjvQAAAAAlZ/m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfnKJtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG/Yqj0AAAAAA9f0vwAAAAAOc2k9AAAAABgJ+T8AAAAAteOlPQAAAAB2ivA/AAAAALp3hj0AAAAAsyD4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFSWE7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICQwG89AAAAABaF8b8AAAAAtJq/vQAAAABkMt8/AAAAAB5Ws70AAAAAW/jwPwAAAADF4gk+AAAAAL/39r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACicxK3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuhQOPQAAAAD1G+y/AAAAALrMDL4AAAAA2fgAQAAAAAB18qq9AAAAAAYw8j8AAAAAxLX2PQAAAACwY/y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJvkGiGnGbWMAWyUTegDjAF0lEdAqiWhB7eEZnV9lChoBkdAkmwX4fwI+mgHTegDaAhHQKol1V94NZx1fZQoaAZHQJvX9vIfbK1oB03oA2gIR0CqJgymygPFdX2UKGgGR0CV/gOxjawmaAdN6ANoCEdAqicki4axYHV9lChoBkdAnMzR/EwWWWgHTegDaAhHQKoyliay8jB1fZQoaAZHQJbfP1UVBUtoB03oA2gIR0CqMu/vfCQ+dX2UKGgGR0CdT06zVtoBaAdN6ANoCEdAqjNFnkDIR3V9lChoBkdAlhPw4XGfgGgHTegDaAhHQKo06uyu6mR1fZQoaAZHQJvcplQMx49oB03oA2gIR0CqQZGQKa5PdX2UKGgGR0CSC0FqSHM2aAdN6ANoCEdAqkHG2VmjCnV9lChoBkdAnRl0ZWJaaGgHTegDaAhHQKpB/hOxjax1fZQoaAZHQJ1fan3ta6loB03oA2gIR0CqQxqu8scydX2UKGgGR0CXCjexOclPaAdN6ANoCEdAqk3tie/Ya3V9lChoBkdAl6S6tknTiWgHTegDaAhHQKpOIXC0ngJ1fZQoaAZHQJrV3M6ij+JoB03oA2gIR0CqTno4EOiGdX2UKGgGR0CZrASt/4IsaAdN6ANoCEdAqlAUPhAGCHV9lChoBkdAme465sj3VWgHTegDaAhHQKpdsyeqaPV1fZQoaAZHQJoLK1kUbkxoB03oA2gIR0CqXeYWDYh/dX2UKGgGR0CXBjLXtjTbaAdN6ANoCEdAql4fovBacXV9lChoBkdAlWF+yquKXWgHTegDaAhHQKpfSyEcsDp1fZQoaAZHQJCwRPl+3H9oB03oA2gIR0Cqad6PbO/tdX2UKGgGR0CcADdBBzFNaAdN6ANoCEdAqmoRZdOZcHV9lChoBkdAnhG/Q0GeMGgHTegDaAhHQKpqSAggX/J1fZQoaAZHQJofIrlNlAhoB03oA2gIR0Cqa2VKXfIkdX2UKGgGR0CaWL77bcoIaAdN6ANoCEdAqnmROi35OHV9lChoBkdAnKFLleWv82gHTegDaAhHQKp5xmcvugJ1fZQoaAZHQJknK0jTrmhoB03oA2gIR0Cqef93bEgodX2UKGgGR0CelOGL1mJ4aAdN6ANoCEdAqnsWfwqiGnV9lChoBkdAnXSflZHNHGgHTegDaAhHQKqF7eBQN1B1fZQoaAZHQJ4eDPMSsbNoB03oA2gIR0CqhiIAOrhjdX2UKGgGR0CfC9eKsMiKaAdN6ANoCEdAqoZckdFOPHV9lChoBkdAnXSWH+Idl2gHTegDaAhHQKqHhxHXmNl1fZQoaAZHQJOs3idat9xoB03oA2gIR0Cqlc593KSxdX2UKGgGR0CdHUQ/5ckdaAdN6ANoCEdAqpYB1/2Cd3V9lChoBkdAmC7V+uvECWgHTegDaAhHQKqWPayKNyZ1fZQoaAZHQJzb8XrMTvloB03oA2gIR0Cql13Ytg8bdX2UKGgGR0CZj4QvYe1baAdN6ANoCEdAqqJIJNTLn3V9lChoBkdAl7BLQTmGNGgHTegDaAhHQKqiffxc3VF1fZQoaAZHQHnWjklu3ttoB03oA2gIR0CqordNN8E3dX2UKGgGR0CWNAlwcYIjaAdN6ANoCEdAqqPRmkFfRnV9lChoBkdAm7eQGB4D92gHTegDaAhHQKqxLDv3JxN1fZQoaAZHQJTTGT5ftyBoB03oA2gIR0CqsYCEQGwBdX2UKGgGR0B+OnUSZjQRaAdN6ANoCEdAqrHb6JqIrXV9lChoBkdAleEe7lJYkmgHTegDaAhHQKqzkCiAUcp1fZQoaAZHQJ07rBUJfIFoB03oA2gIR0CqviNo8IRidX2UKGgGR0CYjDKyfL9uaAdN6ANoCEdAqr5W+VTrFHV9lChoBkdAlLnGozeoDWgHTegDaAhHQKq+knyd4FB1fZQoaAZHQJjZRbD/EO1oB03oA2gIR0Cqv6z/p+tsdX2UKGgGR0CXHzAZsKsuaAdN6ANoCEdAqsvJyn1nNHV9lChoBkdAm3D3w9aEBmgHTegDaAhHQKrMGMVDa5B1fZQoaAZHQJ6ZWMtK7I1oB03oA2gIR0CqzHHI6r/9dX2UKGgGR0CaKp+1jRUnaAdN6ANoCEdAqs4qU3XI2nV9lChoBkdAmQAUdBBzFWgHTegDaAhHQKraOBvrGBF1fZQoaAZHQJZ5COo5xR5oB03oA2gIR0Cq2nIomXw9dX2UKGgGR0CbxPv1lGwzaAdN6ANoCEdAqtqq3solU3V9lChoBkdAnLvr6k6902gHTegDaAhHQKrbzKSPluF1fZQoaAZHQJtiunxaxHJoB03oA2gIR0Cq5sI2n88+dX2UKGgGR0CadmCQtBfKaAdN6ANoCEdAqucQCEHt4XV9lChoBkdAm3G70rbxmWgHTegDaAhHQKrnZMK1G9Z1fZQoaAZHQJsSswTM7ltoB03oA2gIR0Cq6PcdgfEGdX2UKGgGR0CbOJEdNnGsaAdN6ANoCEdAqvZJv3rUsnV9lChoBkdAe/jmbsniN2gHTegDaAhHQKr2f/pdKNB1fZQoaAZHQJeWZDa4+bFoB03oA2gIR0Cq9rj5j6N3dX2UKGgGR0CcJJZntfG/aAdN6ANoCEdAqvfXqqwQlXV9lChoBkdAnw0OaWom5WgHTegDaAhHQKsCx2IO6NF1fZQoaAZHQJf9TDpC8e1oB03oA2gIR0CrAvrf1pTNdX2UKGgGR0CbncDtPYWdaAdN6ANoCEdAqwM1hmXgL3V9lChoBkdAmEu1DneSCGgHTegDaAhHQKsEaVAzHjp1fZQoaAZHQJpUoOPNmlJoB03oA2gIR0CrEnnQQcxTdX2UKGgGR0CeD5htLteEaAdN6ANoCEdAqxKstmL9/HV9lChoBkdAnCBMqvvBrWgHTegDaAhHQKsS5HYHxBp1fZQoaAZHQJ1O/J6po9NoB03oA2gIR0CrE/yeiBXkdX2UKGgGR0CdnvKXOW0JaAdN6ANoCEdAqx63dM0xd3V9lChoBkdAmwNnzDn/1mgHTegDaAhHQKse6UO/cnF1fZQoaAZHQJwf8EbHZK5oB03oA2gIR0CrHyW5QP7OdX2UKGgGR0CZkSUuL740aAdN6ANoCEdAqyA60dBBzHV9lChoBkdAnsJOQQtjC2gHTegDaAhHQKsuZcQiA2B1fZQoaAZHQJwDD6wdKdxoB03oA2gIR0CrLpfaQFLWdX2UKGgGR0CekUNG3F1kaAdN6ANoCEdAqy7QqXnhbXV9lChoBkdAoA8fMbFS9GgHTegDaAhHQKsv/b/wRXh1fZQoaAZHQJweNcY64lRoB03oA2gIR0CrOq9OZb6hdX2UKGgGR0CeDEaGHpKSaAdN6ANoCEdAqzriUxEfDHV9lChoBkdAms9tRJmNBGgHTegDaAhHQKs7HXJYDDF1fZQoaAZHQJv4Nk9U0eloB03oA2gIR0CrPD6isXBQdX2UKGgGR0CdglekpI+XaAdN6ANoCEdAq0oc2WIGhXV9lChoBkdAn12KbayrxWgHTegDaAhHQKtKbYf4h2Z1fZQoaAZHQJ4R77WNFSdoB03oA2gIR0CrSsfXXiBHdX2UKGgGR0Cenldz4k/saAdN6ANoCEdAq0v/FcY64nV9lChoBkdAnw7qIacZtWgHTegDaAhHQKtWrCKJl8R1fZQoaAZHQJ32bYL9deJoB03oA2gIR0CrVuKvNeMRdX2UKGgGR0CgZS/DDTBqaAdN6ANoCEdAq1cebXpW3nV9lChoBkdAnGbjUd7v5WgHTegDaAhHQKtYMRGMGX51fZQoaAZHQJ+UG6NEPUdoB03oA2gIR0CrZJLtVrAQdX2UKGgGR0CUVOg8bJfZaAdN6ANoCEdAq2TigM+eOHV9lChoBkdAmrGx55Z8r2gHTegDaAhHQKtlPh2GIsR1fZQoaAZHQJ33IXizcARoB03oA2gIR0CrZu98zAN5dX2UKGgGR0CbhMvIfbKzaAdN6ANoCEdAq3KUe4kNWnV9lChoBkdAnUpXg1m8NGgHTegDaAhHQKtyyRqXWvt1fZQoaAZHQJuO/zFuNxVoB03oA2gIR0Crcv/w7T2GdX2UKGgGR0CfJ7lz2exwaAdN6ANoCEdAq3QbuQZGa3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (987 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1608.2389736900805, "std_reward": 135.59189637644428, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T16:34:46.895161"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c798b8401954991980a63f258c5cce550aefbaa003a881efe5f1b62ebd1c560
3
+ size 2136