hackaton / equipment_analysis.py
bneay's picture
py scripts
4256453
# equipment_analysis.py
# Analyze equipment patterns across full dataset to understand redundancy and criticality patterns
import pandas as pd
import numpy as np
import re
from collections import Counter, defaultdict
import matplotlib.pyplot as plt
import seaborn as sns
print("="*60)
print("EQUIPMENT PATTERN ANALYSIS FOR CRITICALITY UNDERSTANDING")
print("="*60)
# Load the full dataset
try:
df = pd.read_excel('Taqathon_data.xlsx', sheet_name='Oracle')
print(f"✓ Loaded full dataset: {df.shape}")
except FileNotFoundError:
print("❌ Error: Taqathon_data.xlsx not found!")
print("Please ensure the file is in the current directory.")
exit(1)
print(f"Columns available: {df.columns.tolist()}")
# ============== STEP 1: BASIC EQUIPMENT OVERVIEW ==============
print("\n" + "="*50)
print("STEP 1: EQUIPMENT OVERVIEW")
print("="*50)
# Check for missing values in key columns
print("\nMissing values check:")
print(f"Description: {df['Description'].isnull().sum()}")
print(f"Description de l'équipement: {df['Description de l\'équipement'].isnull().sum()}")
print(f"Criticité: {df['Criticité'].isnull().sum()}")
# Remove rows with missing critical information
df_clean = df.dropna(subset=['Description', 'Description de l\'équipement', 'Criticité'])
print(f"\nClean dataset shape: {df_clean.shape}")
# ============== STEP 2: EQUIPMENT TYPE ANALYSIS ==============
print("\n" + "="*50)
print("STEP 2: EQUIPMENT TYPE FREQUENCY ANALYSIS")
print("="*50)
# Get all unique equipment types
equipment_types = df_clean['Description de l\'équipement'].value_counts()
print(f"\nTotal unique equipment types: {len(equipment_types)}")
print(f"\nTop 20 most frequent equipment types:")
for equipment, count in equipment_types.head(20).items():
avg_criticality = df_clean[df_clean['Description de l\'équipement'] == equipment]['Criticité'].mean()
print(f" {equipment}: {count} cases (avg criticality: {avg_criticality:.2f})")
# ============== STEP 3: REDUNDANCY PATTERN DETECTION ==============
print("\n" + "="*50)
print("STEP 3: REDUNDANCY PATTERN DETECTION")
print("="*50)
# Function to detect redundancy patterns
def analyze_redundancy_patterns(equipment_name):
patterns = {
'has_ab_suffix': bool(re.search(r'\b[AB]$|\b[AB]\b', equipment_name, re.IGNORECASE)),
'has_number_suffix': bool(re.search(r'\b[N°]*\s*[0-9]+$|\b[0-9]+$', equipment_name)),
'has_principal': 'PRINCIPAL' in equipment_name.upper(),
'has_primaire': 'PRIMAIRE' in equipment_name.upper(),
'has_secondaire': 'SECONDAIRE' in equipment_name.upper(),
'has_auxiliaire': 'AUXILIAIRE' in equipment_name.upper(),
'has_unique': 'UNIQUE' in equipment_name.upper(),
'multiple_numbers': len(re.findall(r'\d+', equipment_name)) > 1
}
return patterns
# Apply redundancy analysis
equipment_analysis = []
for equipment in df_clean['Description de l\'équipement'].unique():
patterns = analyze_redundancy_patterns(equipment)
equipment_data = df_clean[df_clean['Description de l\'équipement'] == equipment]
analysis = {
'equipment': equipment,
'count': len(equipment_data),
'avg_criticality': equipment_data['Criticité'].mean(),
'max_criticality': equipment_data['Criticité'].max(),
'min_criticality': equipment_data['Criticité'].min(),
'std_criticality': equipment_data['Criticité'].std(),
**patterns
}
equipment_analysis.append(analysis)
equipment_df = pd.DataFrame(equipment_analysis)
# ============== STEP 4: REDUNDANCY CLASSIFICATION ==============
print("\n" + "="*50)
print("STEP 4: EQUIPMENT REDUNDANCY CLASSIFICATION")
print("="*50)
# Classify equipment by redundancy indicators
def classify_redundancy(row):
if row['has_principal'] or row['has_unique']:
return 'SINGLE_CRITICAL'
elif row['has_primaire'] or row['has_secondaire']:
return 'DUAL_SYSTEM'
elif row['has_ab_suffix']:
return 'DUAL_SYSTEM'
elif row['has_number_suffix']:
return 'MULTIPLE_SYSTEM'
elif row['has_auxiliaire']:
return 'AUXILIARY'
else:
return 'UNKNOWN'
equipment_df['redundancy_class'] = equipment_df.apply(classify_redundancy, axis=1)
# Analyze by redundancy class
print("\nEquipment distribution by redundancy classification:")
redundancy_stats = equipment_df.groupby('redundancy_class').agg({
'count': 'sum',
'avg_criticality': 'mean',
'equipment': 'count'
}).round(3)
for redundancy_class, stats in redundancy_stats.iterrows():
print(f"\n{redundancy_class}:")
print(f" Number of equipment types: {stats['equipment']}")
print(f" Total anomaly cases: {stats['count']}")
print(f" Average criticality: {stats['avg_criticality']:.3f}")
# ============== STEP 5: HIGH CRITICALITY EQUIPMENT ANALYSIS ==============
print("\n" + "="*50)
print("STEP 5: HIGH CRITICALITY EQUIPMENT IDENTIFICATION")
print("="*50)
# Find equipment with highest average criticality
high_criticality_equipment = equipment_df[equipment_df['avg_criticality'] >= 6.0].sort_values('avg_criticality', ascending=False)
print(f"\nEquipment types with average criticality >= 6.0:")
for _, row in high_criticality_equipment.iterrows():
print(f" {row['equipment']}: {row['avg_criticality']:.2f} (n={row['count']}, class={row['redundancy_class']})")
# ============== STEP 6: EQUIPMENT NAMING PATTERN ANALYSIS ==============
print("\n" + "="*50)
print("STEP 6: EQUIPMENT NAMING PATTERN ANALYSIS")
print("="*50)
# Group similar equipment names to detect families
def extract_base_equipment_name(equipment_name):
# Remove common suffixes and numbers to group similar equipment
base_name = re.sub(r'\s*[AB]$|\s*[N°]*\s*[0-9]+$', '', equipment_name)
base_name = re.sub(r'\s*PRIMAIRE$|\s*SECONDAIRE$|\s*PRINCIPAL$', '', base_name)
base_name = base_name.strip()
return base_name
# Create equipment families
equipment_families = defaultdict(list)
for equipment in df_clean['Description de l\'équipement'].unique():
base_name = extract_base_equipment_name(equipment)
equipment_families[base_name].append(equipment)
# Find equipment families with multiple variants (indicating redundancy)
print("\nEquipment families with multiple variants (indicating redundancy):")
redundant_families = {k: v for k, v in equipment_families.items() if len(v) > 1}
for family, variants in sorted(redundant_families.items(), key=lambda x: len(x[1]), reverse=True)[:15]:
if len(variants) <= 10: # Only show families with reasonable number of variants
print(f"\n{family} ({len(variants)} variants):")
for variant in sorted(variants):
variant_data = df_clean[df_clean['Description de l\'équipement'] == variant]
avg_crit = variant_data['Criticité'].mean()
count = len(variant_data)
print(f" - {variant}: {avg_crit:.2f} avg criticality ({count} cases)")
# ============== STEP 7: SECTION-EQUIPMENT CRITICALITY ANALYSIS ==============
print("\n" + "="*50)
print("STEP 7: SECTION-EQUIPMENT CRITICALITY ANALYSIS")
print("="*50)
# Analyze criticality by section and equipment type
section_equipment_analysis = df_clean.groupby(['Section propriétaire', 'Description de l\'équipement']).agg({
'Criticité': ['mean', 'count', 'max']
}).round(3)
section_equipment_analysis.columns = ['avg_criticality', 'count', 'max_criticality']
section_equipment_analysis = section_equipment_analysis.reset_index()
# Find section-equipment combinations with highest criticality
high_risk_combinations = section_equipment_analysis[
(section_equipment_analysis['avg_criticality'] >= 7.0) &
(section_equipment_analysis['count'] >= 3)
].sort_values('avg_criticality', ascending=False)
print(f"\nHigh-risk Section-Equipment combinations (avg criticality >= 7.0, min 3 cases):")
for _, row in high_risk_combinations.iterrows():
print(f" {row['Section propriétaire']} - {row['Description de l\'équipement']}: "
f"{row['avg_criticality']:.2f} avg ({row['count']} cases, max: {row['max_criticality']})")
# ============== STEP 8: EQUIPMENT KEYWORD ANALYSIS ==============
print("\n" + "="*50)
print("STEP 8: CRITICAL EQUIPMENT KEYWORD ANALYSIS")
print("="*50)
# Analyze keywords in equipment descriptions that correlate with high criticality
equipment_keywords = {}
all_equipment_text = ' '.join(df_clean['Description de l\'équipement'].values).upper()
# Define important keywords to analyze
important_keywords = [
'PRINCIPAL', 'TRANSFO', 'TURBINE', 'ALTERNATEUR', 'POMPE', 'VENTILATEUR',
'CHAUDIERE', 'CHAUDIÈRE', 'COMPRESSEUR', 'MOTEUR', 'VANNE', 'SOUPAPE',
'RECHAUFFEUR', 'RÉCHAUFFEUR', 'REFROIDISSEMENT', 'REFRIGERANT', 'RÉFRIGÉRANT',
'PRIMAIRE', 'SECONDAIRE', 'AUXILIAIRE', 'UNITE', 'UNITÉ', 'GROUPE'
]
for keyword in important_keywords:
# Find equipment containing this keyword
equipment_with_keyword = df_clean[df_clean['Description de l\'équipement'].str.contains(keyword, case=False, na=False)]
if len(equipment_with_keyword) > 0:
avg_criticality = equipment_with_keyword['Criticité'].mean()
count = len(equipment_with_keyword)
equipment_keywords[keyword] = {
'count': count,
'avg_criticality': avg_criticality,
'percentage': count / len(df_clean) * 100
}
print("\nEquipment keywords analysis (sorted by average criticality):")
sorted_keywords = sorted(equipment_keywords.items(), key=lambda x: x[1]['avg_criticality'], reverse=True)
for keyword, stats in sorted_keywords:
print(f" {keyword}: {stats['avg_criticality']:.3f} avg criticality "
f"({stats['count']} cases, {stats['percentage']:.1f}% of dataset)")
# ============== STEP 9: SPECIFIC PATTERNS FOR CRITICAL CASES ==============
print("\n" + "="*50)
print("STEP 9: PATTERNS IN CRITICAL CASES (CRITICALITY >= 10)")
print("="*50)
critical_cases = df_clean[df_clean['Criticité'] >= 10]
print(f"\nTotal critical cases (criticality >= 10): {len(critical_cases)}")
if len(critical_cases) > 0:
print(f"\nEquipment types in critical cases:")
critical_equipment_counts = critical_cases['Description de l\'équipement'].value_counts()
for equipment, count in critical_equipment_counts.items():
total_equipment_cases = len(df_clean[df_clean['Description de l\'équipement'] == equipment])
percentage = count / total_equipment_cases * 100
print(f" {equipment}: {count}/{total_equipment_cases} cases ({percentage:.1f}% critical)")
print(f"\nSections with critical cases:")
critical_section_counts = critical_cases['Section propriétaire'].value_counts()
for section, count in critical_section_counts.items():
total_section_cases = len(df_clean[df_clean['Section propriétaire'] == section])
percentage = count / total_section_cases * 100
print(f" {section}: {count}/{total_section_cases} cases ({percentage:.1f}% critical)")
# ============== STEP 10: RECOMMENDATIONS ==============
print("\n" + "="*50)
print("STEP 10: EQUIPMENT ANALYSIS RECOMMENDATIONS")
print("="*50)
print("\n🎯 KEY FINDINGS:")
print("1. Equipment Redundancy Patterns:")
print(f" - {len(equipment_df[equipment_df['redundancy_class'] == 'SINGLE_CRITICAL'])} equipment types classified as SINGLE_CRITICAL")
print(f" - {len(equipment_df[equipment_df['redundancy_class'] == 'DUAL_SYSTEM'])} equipment types classified as DUAL_SYSTEM")
print(f" - {len(equipment_df[equipment_df['redundancy_class'] == 'MULTIPLE_SYSTEM'])} equipment types classified as MULTIPLE_SYSTEM")
print("\n2. High-Risk Equipment Keywords:")
top_risk_keywords = sorted_keywords[:5]
for keyword, stats in top_risk_keywords:
print(f" - '{keyword}': {stats['avg_criticality']:.3f} avg criticality")
print("\n3. Equipment Families with Redundancy:")
print(f" - Found {len(redundant_families)} equipment families with multiple variants")
print(f" - This suggests systematic redundancy patterns in the data")
print("\n🚀 RECOMMENDATIONS FOR FEATURE ENGINEERING:")
print("1. Create 'equipment_redundancy_class' feature based on naming patterns")
print("2. Add 'equipment_base_type' feature by extracting equipment families")
print("3. Implement 'critical_equipment_keywords' scoring system")
print("4. Create 'section_equipment_risk' interaction features")
print("5. Build 'equipment_criticality_history' based on historical data")
# ============== SAVE ANALYSIS RESULTS ==============
print("\n" + "="*50)
print("SAVING ANALYSIS RESULTS")
print("="*50)
# Save equipment analysis dataframe
equipment_df.to_csv('equipment_analysis_results.csv', index=False)
print("✓ Saved equipment analysis to 'equipment_analysis_results.csv'")
# Save high-risk combinations
high_risk_combinations.to_csv('high_risk_equipment_combinations.csv', index=False)
print("✓ Saved high-risk combinations to 'high_risk_equipment_combinations.csv'")
# Create summary statistics
summary_stats = {
'total_equipment_types': len(equipment_df),
'single_critical_equipment': len(equipment_df[equipment_df['redundancy_class'] == 'SINGLE_CRITICAL']),
'dual_system_equipment': len(equipment_df[equipment_df['redundancy_class'] == 'DUAL_SYSTEM']),
'multiple_system_equipment': len(equipment_df[equipment_df['redundancy_class'] == 'MULTIPLE_SYSTEM']),
'high_criticality_equipment': len(high_criticality_equipment),
'equipment_families_with_redundancy': len(redundant_families),
'critical_cases_count': len(critical_cases)
}
import json
with open('equipment_analysis_summary.json', 'w') as f:
json.dump(summary_stats, f, indent=2)
print("✓ Saved summary statistics to 'equipment_analysis_summary.json'")
print("\n" + "="*60)
print("EQUIPMENT ANALYSIS COMPLETED!")
print("="*60)
print("\nFiles generated:")
print("- equipment_analysis_results.csv")
print("- high_risk_equipment_combinations.csv")
print("- equipment_analysis_summary.json")
print("\nPlease review the analysis results and share the key findings!")
print("This will help us design the optimal equipment intelligence features.")